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ABSTRACT 

To effectively conserve species at risk (SAR), it is important to understand their ecology 

at multiple scales, including stand-level habitat associations and landscape-level 

distribution. The Rusty Blackbird (Euphagus carolinus), Olive-Sided Flycatcher 

(Contopus cooperi), and Canada Warbler (Cardellina canadensis) are listed landbird 

species at risk (SAR) that breed in wet forest habitat in Canada’s Maritimes. To 

characterize their habitat for stand-scale conservation, I surveyed vegetation cover and 

structure at 99 known locations in the Southwest Nova Biosphere Reserve. Habitat at sites 

occupied by each SAR was significantly different from habitat at unoccupied sites. 

However, occupied habitat near recent forest harvesting (within 1 km) did not differ from 

that in unharvested areas, suggesting features can be retained in managed forest landscapes. 

I further categorized habitat using Nova Scotia’s Forest Ecosystem Classification (FEC) 

and found these SAR predominantly occupied the same wet-poor ecosites, potentially 

allowing for management of all three species as a suite. I also used FEC information to 

verify spatial data layers commonly used in forest management planning and found their 

accuracy ranged from poor to fair, depending on layer and buffer size considered.  

 

To support regional-scale protected areas planning, I developed a species distribution 

model (SDM) for these species. I first evaluated 128 published SDM algorithms, finding 

that a majority did not accurately report model uncertainty, prediction metric, or both. To 

aid conservation practitioners in selecting and reporting on SDMs for conservation, I 

developed a guide based on data type, conservation objective, and experience. I then 

modeled the population density of the three SAR in four national parks in New Brunswick 

and Nova Scotia, using Poisson log-linear regression models with a branching hierarchy. 

When comparing predicted population sizes to regional population estimates, national 

parks supported habitat for only 3-4% of Canada Warblers and 1-2% of Olive-sided 

Flycatchers. Thus it is highly unlikely that existing national parks alone are able to maintain 

viable regional populations. To help prevent extirpation of these species, forestry 

prescriptions need to be adjusted to conserve habitat, and key locations for management 

should be identified at a regional scale. 
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CHAPTER 1 INTRODUCTION 

 

As human-caused disturbance intensifies globally, an increasing number of species are in 

decline, with many at risk of extinction. Now that at least 80% of the land surface of the 

Earth experiences direct human impacts (Sanderson et al. 2002), global extinction rates 

have risen to exceed natural rates of by three to four orders of magnitude (De Vos et al. 

2014). As resource exploitation and climate change continue, the prognosis for an 

increasing number of species is rapidly becoming grim (Vié et al. 2008).  

Globally, habitat modifications are directly correlated with numbers of species at risk 

(SAR), and continued land-use changes are expected to have the greatest future impacts on 

terrestrial biodiversity (Sala 2000). Though Canada is one of the few places retaining 

extensive tracts of forest, rates of species endangerment are similar to other countries in 

the Americas, and are predominantly the result of ongoing habitat loss (Kerr & Deguise 

2004). Human modification to natural landscapes, as well as species richness, is greater in 

the southern regions of Canada (Kerr & Cihlar 2004), including  the provinces of New 

Brunswick and Nova Scotia.  

Efforts to reduce species decline often include habitat conservation or establishment of 

protected areas in potential breeding habitat (Kerr & Cihlar 2004). Protected areas are 

important reserves for SAR (Soule & Terborgh 1999), but they may not be sufficient in 

size or location for conserving biodiversity (Lemieux & Scott 2005). Canada’s Species At 

Risk Act (SARA) was passed without evaluating the potential for existing protected areas 

to conserve species at risk: as of 2004, there was no relationship between the distribution 

of federal protected areas and the distribution of federally-listed SAR in Canada (Kerr & 

Cihlar 2004). The contribution of existing protected areas to available habitat is presently 

unknown for most taxa (Kerr & Cihlar 2004).  

Given increasing threats to habitat, and lack of coverage of the existing network, the 

expansion of protected areas alone may be insufficient to protect SAR in Canada. However, 

expanding protected areas is not the only solution: it is urgent that conservation be 
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facilitated in human-dominated landscapes, in cooperative efforts with landowners (Kerr 

& Deguise 2004; Coristine & Kerr 2011). For many forest-dwelling taxa, the contribution 

of both protected areas and lands under active forest management is unknown. 

For landbirds that use forest habitat, ongoing spatially-extensive changes to this habitat is 

their greatest threat in the breeding range. Although substantial threats occur during 

migration and wintering, the relative importance of breeding factors, such as habitat loss, 

can be more important for some populations (Rushing et al. 2016) Many forest bird species 

are vulnerable to habitat alteration through logging (e.g. Hutto & Gallo 2006; Lain et al. 

2008; Cahall & Hayes 2009; Schlossberg & King 2009). The relationships of birds to their 

habitat, in both managed and unmanaged lands, needs to be known at local and regional 

scales in order to develop comprehensive approaches to conservation (Hurme et al. 2005; 

Cumming et al. 2010b). To protect forest habitat, two commonly used tools are protection 

(restriction of management activities on the land) and stand-level sustainable forest 

management (planning that incorporates wildlife values and protects habitat for species at 

risk). Using these tools for conservation requires at least some prior knowledge of what 

habitat a given SAR uses, and how that habitat can be identified or located. Thus it is 

essential to characterize and map the habitat of species in decline to identify candidate 

areas for protection and effectively manage areas experiencing disturbance.  

1.1. THE EFFECTS OF SCALE 

When characterizing habitat, it is necessary to choose an appropriate scale for analysis. If 

the scale of study and the scale of species responses are different, results may be misleading 

(Savignac et al. 2000; Schaefer & Mayor 2007). Habitat can be modeled or measured at a 

variety of extents, from microsite to range-wide. Analyses need to consider both the scale 

at which the organism operates, but also, the scale at which management action will be 

taken. 

Organisms operate at different scales for different elements of their life histories, with each 

ecological process occurring within an ‘ecological neighbourhood’, where an organism is 

active or has some influence during a period of time (Addicott et al. 1987). For example, 
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during the breeding season, the ecological neighbourhood could be a nest site, a foraging 

site, or a territory or home range, depending on the ecological process being studied. 

However, not all scales are equally valuable for applying conservation action, particularly 

when trying to design protected areas or guide stand-level forest management planning. 

Although habitat is often modeled based on existing data, often at relatively coarse scales 

such as regional or national extents, this may be insufficient to capture species’ responses 

(Burgman et al. 2001; Elith & Leathwick 2009a). Only by studying an organism’s habitat 

at multiple scales can it be determined what scales might be appropriate for conservation 

action, and if existing management tools can produce meaningful results at these scales.  

It is known that patterns of habitat use by bird species differ depending on the spatial scale 

at which they are measured, and the habitat features that are important at one scale may not 

be considered important at another. For example, patterns of habitat use by Pileated 

Woodpeckers (Dryocopus pileatus L.) were best explained by different variables at the 

microhabitat (<0.04-ha radius plots) and macrohabitat scales (>125-ha radius plots; 

Savignac et al. 2000). Likewise, Girard et al. (2004) studied occurrence of songbirds in 

plots of 50-, 100-, and 1000-m radii, and found that occurrence in forest of different types 

(coniferous, deciduous, and mixedwood) in Quebec significantly differed between scales.  

When considering the distribution of species, variables measured at local or fine scales are 

often better predictors. For example, relative abundances of breeding forest birds in New 

England forests were better predicted by local-scale variables (forest stand structure) than 

stand-scale variables (cover type or size class of trees; DeGraaf et al. 1998). Similarly, 

Betts et al. (2006c) found that site occupancy of a suite of songbird species depended more 

on fine-scale variables than coarse-scale variables for most species, but that landscape 

configuration also played an important role. When considering the needs of a species, 

microhabitat features should not be ignored. Diversity of breeding forest bird species is 

reliant on the vertical structures of forests, or forest strata (MacArthur & MacArthur 1961). 

As such, field study of fine-scale habitat features should be included to better understand 

bird-habitat relationships prior to engaging in predictive modeling for conservation. 
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It should be cautioned that although many studies compare the effects of scale, some 

neglect to quantify the operating scales, and terms are not equivalent between studies. For 

example, there seems to be little agreement on the size implied by ‘landscape scale’, which 

has been used to refer to areas as small as 3 ha (Richmond et al. 2012), to 500 ha (Taylor 

& Krawchuk 2005), and even as large as 8000 ha (Bloom et al. 2013). In this thesis, I use 

the local or stand scale to describe the ecological neighbourhood immediately around the 

bird sighting (0.8 ha, 50 m radius circle), and assign landscape scale based on the largest 

territory size (MacKay et al. 2014) for these SAR (20 ha, 250 m radius circle). 

1.2. STUDY SPECIES AND CONTEXT 

The Rusty Blackbird (Euphagus carolinus Müller) Olive-Sided Flycatcher (Contopus 

cooperi Swainson), and Canada Warbler (Cardellina [Wilsonia] canadensis L.) are listed 

forest landbird species at risk in Canada, with the Rusty Blackbird designated as Special 

Concern and the other two species as Threatened (Government of Canada 2011). Most of 

the breeding range for these three migrants falls within Canada, housing over 70% of Rusty 

Blackbird and Canada Warbler  populations, and over 50% of the Olive-sided Flycatcher 

population (Blancher 2003). The Maritimes represent the easternmost extent of the range 

of these species. Estimates from long-term monitoring show that population declines for 

these species have been devastating in the last half-century.  

The Rusty Blackbird has experienced >88% global population reduction since 1960, but 

this decline has likely been continuing for a century or more (Greenberg & Droege 1999; 

Niven et al. 2004). Since 1968, the Olive-sided Flycatcher global population has declined 

by approximately 79%, and the Canada Warbler population has declined by approximately 

85%. For all three species, annual rate of decline in Atlantic Canada in recent years has 

exceeded mean range-wide decline by two-to-four times (Environment Canada 2014a; 

Sauer et al. 2014). Evidence of breeding range contraction has been observed for the Rusty 

Blackbird in Maine (Powell 2008), New Hampshire (Deming 2009), and the southern 

boreal forest (Greenberg et al. 2011). Extirpation risk may be high in Nova Scotia, 

particularly as it is home to a unique subspecies of Rusty Blackbird (E. c. nigrans). 
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In the eastern portion of their range, all three species rely on forested habitat in or adjacent 

to wet areas (Altman & Sallabanks 2010; Reitsma et al. 2010; Avery 2013a), in natural and 

managed stands (Powell 2008; Robertson & Hutto 2013; Hunt et al. 2015). All three 

species are insectivorous on the breeding grounds, though their modes of acquiring food 

differ. Rusty Blackbirds forage by wading into shallow water, or feed in deeper water from 

a platform of floating vegetation or debris (Bergtold 1927; Greenberg et al. 2011; Avery 

2013a). Olive-sided Flycatchers sally from perches on tall trees to capture flying insects, 

and Canada Warblers forage aerially or occasionally on the ground in dense, shrubby 

habitats (Reitsma et al. 2010).  

These three species have been receiving increased conservation interest in recent years, 

with international research and conservation consortiums forming around them (e.g. 

International Rusty Blackbird Working Group; Canada Warbler International Conservation 

Initiative) and national and provincial governments and non-government organizations 

addressing them in management planning. A number of organizations and researchers have 

identified an urgent need to collect data regarding the availability and quality of habitat 

(e.g. Hobson et al. 2010), particularly in areas with vulnerable populations. 

Given the increased rate of population declines in the eastern part of the range, conservation 

in the Maritimes may be important for retaining the existing range of these species. On the 

breeding grounds, habitat destruction through wetland loss and forestry activities has been 

hypothesized as a cause of population declines (Greenberg & Droege 1999; Riordan et al. 

2006; Greenberg et al. 2011).  In New Brunswick and Nova Scotia, all three species are 

known to occupy wet forest landscapes in both protected areas, as well as areas of recent 

forest harvesting and management. In Nova Scotia, provincial protected areas are 

designated based on remoteness, rarity, species richness, restoration potential, and 

connectivity potential (Province of Nova Scotia 2013), and in New Brunswick, they are 

designated based on ecologically sensitive features vulnerable to human activity and 

representative or rare ecosystems (Government of New Brunswick 2012). Neither province 

establishes protected areas specifically for conserving species at risk. Outside of protected 

areas, landscapes in these provinces feature high levels of habitat heterogeneity as well as 
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extensive active forest harvesting operations, and have been substantially altered by 

anthropogenic development in recent years (Loo & Ives 2003; Mosseler et al. 2003). 

However, they have received relatively little study in Atlantic Canada (but see 

undergraduate theses by Fargher 2011; Harper 2011). Until now, there has been a lack of 

specific and quantifiable information regarding fine-scale habitat associations of these 

species in Nova Scotia, nor have there been targeted regional predictive habitat models 

(although see Bale et al. in prep).  

1.3. RESEARCH OBJECTIVES AND THESIS STRUCTURE 

The main goals of my thesis were to characterize fine-scale habitat for these SAR in Nova 

Scotia in order to suggest habitat-maintaining forest management practices (Chapters 2 and 

3), choose a regional-scale modelling method informed by conservation objectives 

(Chapter 4), and develop predictive models for protected areas to help guide management 

planning (Chapter 5). 

Chapter 2 begins at the scale of individual forest stands occupied by these three SAR. I 

measure and characterize vegetation cover and habitat structure in Nova Scotia, contrast 

vegetation characteristics between sites occupied and unoccupied by a given species, and 

compare occupied sites in areas of recent harvesting to those in areas not recently 

harvested. I use multivariate methods of analysis and testing of means for non-parametric 

data (including indicator species analysis, non-metric multi-dimensional scaling, and 

classification and regression trees) to identify vegetation characteristics associated with 

particular site treatments for each species. Based on variables that emerge as significant for 

each species and site condition, I recommend forest management strategies to maintain 

habitat features during forest harvesting operations. 

Chapter 3 answers the question: what tools are appropriate for stand-scale forest 

management planning when trying to conserve these three SAR? I characterize habitats 

occupied by these three SAR using Nova Scotia’s Forest Ecosystem Classification (FEC) 

System, and test frequency distributions to see if particular bird species are associated with 

particular forest groups, vegetation types, soil types, and ecosites more than expected by 
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chance. I use FEC data to verify digital spatial layers commonly used in management 

planning, and compare classified and reference categories using error matrices and Kappa 

statistics. Based on inaccuracies in digital data for wet forest habitats, I suggest FEC as a 

stand-level management tool that could be integrated into existing forest management 

methods. 

At regional-to-national scales, modern SAR management often involves the construction 

of species distribution models (SDM) to predict species’ habitat, occurrence, occupancy, 

or abundance across the landscape. In Chapter 4, I classify 128 published SDM algorithms 

by conservation objective(s) and prediction metric, and find that the majority of models do 

not report an appropriate level of uncertainty with their prediction, which could have 

impacts for applied conservation and management. Taking lessons learned from these 

models, I develop a novel framework that guides the user through SDM selection based on 

their conservation objective, while taking into account data type and appropriateness of 

model algorithm for their desired prediction metric. I close with recommendations for best 

practices to aid users in developing robust SDMs to help guide species conservation. 

In Chapter 5, I develop regional-scale SDMs for the Rusty Blackbird, Olive-sided 

Flycatcher, and Canada Warbler in national parks in New Brunswick and Nova Scotia. I 

choose a hierarchical set of covariates expected to influence habitat selection by drawing 

upon habitat associations derived in Chapters 2 and 3. Using an extensive avian point count 

dataset from the Boreal Avian Modelling (BAM) Project, I predict population density of 

these bird species in Maritime National Parks using Poisson log-linear regression models 

with a branching hierarchy, in conjunction with Dr. Peter Solymos (University of Alberta). 

I use these predictions to estimate population sizes within National Parks, and compare 

them to regional population estimates to determine if national parks protect enough habitat 

to help buffer population declines in the region. This work was submitted as a report to 

Parks Canada on behalf of BAM. Trish Fontaine (University of Alberta) and Dr. Erin 

Bayne (University of Alberta) assisted with data acquisition and report preparation. 

Finally, I conclude the thesis with discussion of the management implications of my 

findings, and specific recommendations for preventing extirpation of these three species 
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from Nova Scotia and New Brunswick. I explore the limitations of my methods, and 

recommend future research that should be undertaken to engage in the most effective 

conservation for these landbird SAR. 
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CHAPTER 2 HABITAT ASSOCATIONS IN 

NOVA SCOTIA 

 

2.1. INTRODUCTION 

On public and private forest lands, sustainable forest management dictates that operators 

must balance objectives of timber harvest with wildlife and ecosystem values. 

Conservation or protection of SAR is often mandated, either through government 

legislation or wood supply certification schemes (Becker et al. 2011). To effectively 

manage for SAR, biological information about the species should be measured locally to 

maximize its reliability, relevance, and applicability (Hurme et al. 2005; Sallabanks et al. 

2006; Cumming et al. 2010b). This is particularly important for species in decline, as 

conservation efforts may rely heavily on estimates of the extent of known habitat 

(Schlossberg & King 2009). 

The Rusty Blackbird, Olive-Sided Flycatcher, and Canada Warbler are listed forest 

landbird species at risk in Canada that have experienced significant population declines 

(Government of Nova Scotia 2007; Government of Canada 2011; Environment Canada 

2014a). The Committee on the Status of Endangered Wildlife in Canada has assessed the 

Rusty Blackbird as special concern (COSEWIC 2006), and the Olive-sided Flycatcher and 

Canada Warbler as threatened (COSEWIC 2007, 2008). In the Southwest Nova Biosphere 

Reserve (SNBR) all three species are known to occupy wet forest landscapes in both 

protected areas as well as areas of active forest harvesting and management. Many of these 

landscapes feature high levels of habitat heterogeneity as well as extensive forest 

harvesting operations, and have been substantially altered by anthropogenic development 

(Loo & Ives 2003; Mosseler et al. 2003).  

In Nova Scotia, protected areas cover roughly 12% of the landmass, and the national parks 

components of these areas are insufficient to maintain regional populations of these three 

species (Westwood et al. 2015; Chapter 5). In order for populations of these species to 
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recover, they will need to persist in landscapes undergoing various levels of forest 

management. However, in much of Nova Scotia, natural forest dynamics are driven by the 

creation of small gaps resulting from low fire frequency and/or relatively small and 

sporadic insect outbreaks (Neily et al. 2008). As such, songbird communities in these types 

of forests may be sensitive to the changes in landscape structure that result from forest 

harvesting practices, the scale of which differs considerably from local natural disturbance 

regimes (Taylor & Krawchuk 2005). By directly linking tools for measuring species at risk 

habitat to forest inventory measures, it is possible to facilitate conservation and monitoring 

efforts within existing forestry protocols (Psyllakis & Gillingham 2009). Occurrence of a 

species in a given habitat is linked to forest vegetation structures. Understanding these 

specific features is important to help predict and mitigate the impacts of timber harvest 

(Marzluff et al. 2000; Sallabanks et al. 2006). 

Very little information about the response of these SAR to forest harvesting and 

management practices is available (but see Powell et al. 2010a; Robertson & Hutto 2013; 

Hunt et al. 2015), and none has been collected in eastern Canada. Although not explicitly 

tested, forest management on the breeding grounds is hypothesized to significantly 

contribute to population declines for these species (COSEWIC 2007, 2008; Environment 

Canada 2014b). In Pennsylvania, Becker et al. (2011) found strong declines in Canada 

Warbler abundance over 14 years, corresponding with a reduction in area of mature 

deciduous and mixed forest, and an increase of clear cut and early seral stage vegetation. 

From 1998-2000, Harrison et al. (2005) reported local extinction of Canada Warblers from 

an experimental forest undergoing harvesting; however, it is unclear if these trends are due 

to harvesting or region-wide declines in abundance. Despite recent efforts to evaluate these 

species at broader spatial scales (e.g. Haché et al. 2014; Westwood et al. 2015), specific 

habitat requirements are unknown for most of their Canadian range. Nova Scotia, the 

easternmost extent of the range, may support a unique subspecies of Rusty Blackbird (E. 

c. nigrans), making it particularly important to determine regionally-specific habitat 

information (Godfrey 1986; although genetic evidence for this sub-population has not been 

documented, Hobson et al. 2010 supported a separate flyway for populations breeding east 

of the Appalachians).
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2.1.1. Habitat structure and patchiness 

Vegetation structure generally refers to the horizontal and vertical distribution of canopy 

elements, and influences species distribution and abundance through the creation of 

microclimates and microhabitats (Goetz et al. 2010). Forest vegetation structure has long 

been thought to play an important role in determining bird species diversity, explaining 

more variation than vegetation composition alone (MacArthur & MacArthur 1961). Forest 

vegetation structure is commonly used when describing songbird communities, particularly 

as a predictor of species richness and diversity (Heikkinen et al. 2004; Sallabanks et al. 

2006; Goetz et al. 2007; Psyllakis & Gillingham 2009).  

For a particular species of concern, it is necessary to derive species-specific structural 

features associated with habitat use (e.g. Goetz et al. 2010). In Maine and New Hampshire, 

Canada Warbler abundance was better explained by vegetation size-class and structure than 

cover type, with the highest abundances predicted in early seral stage forests (DeGraaf et 

al. 1998). Structural attributes of territories have been characterized for Canada Warbler in 

New Hampshire (Reitsma et al. 2013) and Alberta (Hunt et al. 2015). Canada Warblers 

also show evidence of clustered distributions (Len Reitsma, unpubl. data), suggesting 

suitable habitats may have to extend beyond the size of a single territory (0.4 ha to 0.75, 

COSEWIC 2008). However, as they have much larger territory sizes, the ecological 

neighbourhoods (Addicott et al. 1987) that Olive-sided Flycatcher and Rusty-Blackbird 

occupy  more likely consist of non-contiguous patches in a heterogeneous landscape.  

The variation of structure within forest stands has been thought in some cases to be more 

important than variability between cover types in determining habitat suitability and use 

(DeGraaf et al. 1998; Hurme et al. 2005). For many songbird species, especially those with 

large territories, resources will be distributed unevenly across the territory. Some patches 

will be useful for foraging and nesting, and others will not. If vegetation is patchy and 

heterogeneous across the territory, structural variation is high, whereas homogenous 

vegetation results in low structural variation (Bleho 2009).  

Understanding the scale at which vegetation characteristics are most strongly associated 

with bird life processes is important for management (Richmond et al. 2012). Patchiness 
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(or variability in forest stands) has been considered at the landscape scale, particularly in 

the context of large natural disturbances (e.g. Schmiegelow et al. 1997; Niemela 1999; Lain 

et al. 2008), but rarely within territories. For interior forest swamp species in Rhode Island, 

total habitat availability was thought to be more important than patch size, with species 

focusing their use on very small patches (<1 ha) within a heterogeneous landscape (Golet 

et al. 2001). At fine scales, within-habitat characteristics become important, such as 

horizontal heterogeneity or vegetation height and composition (Böhning-Gaese 1997). 

Small-scale patchiness may be particularly important in southwestern Nova Scotia, where 

the natural disturbance regime is dominated by small gap creation, and the topography is 

variable, leading to a diversity of microsites (Neily et al. 2003). Whereas vegetation 

structure is a well-documented predictor for the occurrence of many species, variation of 

vegetation structure across a territory has been less studied.  

I aimed not only to characterize the vegetation cover and structure in sites occupied by the 

Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler in the Southwest Nova 

Biosphere Reserve (SNBR), but also to capture the variation across individual sites to 

better understand the role of habitat patchiness for these species. The SNBR consists of the 

five southernmost counties of southwestern Nova Scotia, and includes large protected areas 

and areas under timber management. My objectives were to (1) characterize habitat 

occupied by these three species in the SNBR, both in terms of vegetation composition and 

habitat structure and its variability, by comparing occupied habitat to unoccupied habitat; 

(2) compare characteristics of occupied habitat in a landscape matrix of forest harvesting 

to that in non-harvest matrices, and (3) determine whether general management 

recommendations can be formulated to conserve common habitat needs of these three 

species.  

2.2. METHODS 

2.2.1. Study area and focal species 

The SNBR, a UNESCO-designated biosphere reserve, covers 1 546 374 ha and includes 

the five southernmost counties of Nova Scotia (65°24’7”W, 44°13’58N; UNESCO 2007; 
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Figure 2.1). Its forests are located in the south mountain, rossignol, lahave drumlins, and 

western barrens ecodistricts of the western ecoregion (Nova Scotia Department of Natural 

Resources 2003). The area supports a predominantly coniferous forest with associations of 

pine, spruce, and hemlock (Neily et al. 2008). Areas of moist to wet soils disturbed by 

hurricanes serve as the substrate for forests dominated by red maple (Acer rubrum) and 

black spruce (Picea mariana). On less wet sites, associations of eastern hemlock (Tsuga 

canadensis), red spruce (Picea rubens), and white pine (Pinus strobus) occur. The SNBR 

includes several major towns and many small communities, as well as large land holdings 

devoted to forest harvesting. It also includes extensive protected areas, the largest being 

Kejimkujik National Park and the Tobeatic Wilderness Area.  

The Rusty Blackbird breeds in swamps, wooded bogs, and along the borders of lakes and 

streams (Greenberg & Droege 1999; Powell et al. 2010b), placing nests predominantly in 

conifers 1-3 m high (Matsuoka et al. 2010b; Powell et al. 2010a) in both natural and 

managed stands (Powell 2008). Olive-sided Flycatchers predominantly occupy sites near 

patches of early seral vegetation (Altman & Sallabanks 2010). In Nova Scotia, they occur 

in treed wetlands, along natural and anthropogenic forest edges, and in open and semi-open 

forests that are dominated by conifers (Fargher 2011). Nests are located along the mid-to-

upper branches in coniferous trees slightly shorter than the surrounding canopy (Dixon 

1920). The Canada Warbler requires a well-developed shrub layer (Reitsma et al. 2010), 

and can also be locally abundant in regenerating forests (i.e., 6–30 years post-disturbance) 

following anthropogenic or natural disturbances (Lambert & Faccio 2005). Though found 

in a variety of forest types, in its eastern range, the Canada Warbler is most common in wet 

mixed forest (Reitsma et al. 2010). 

2.2.2. Site selection and bird surveys 

As information on the target species at risk was limited in the SNBR, it was necessary to 

increase the inventory of detection sites. To maximize the likelihood of locating birds when 

surveying new locations, I constructed  preliminary habitat suitability index (HSI) models 

to guide ground surveys to areas of potentially suitable habitat (Tirpak et al. 2008). 

Suitability indices, derived from literature review and expert opinion, were assigned to 
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Geographic Information Systems (GIS) layers describing key environmental covariates, 

with analyses conducted using ArcGIS 10.2.2 (Esri Inc. 2014). Polygons were calculated 

with HSI values ranging between 0.0 (habitat not suitable) and 1.0 (habitat of maximum 

suitability; detailed methods available in Westwood 2012). Final models were divided into 

areas of high, medium, and low suitability and the three species’ HSIs were averaged as a 

composite.  

Detection surveys (point counts and playbacks) surveys were conducted from April-July 

2012 and 2013 in randomly selected polygons of high suitability at a minimum of 10 ha in 

the composite HSI, stratified by ecodistrict and management type (non-harvest for matrix 

versus areas in a harvest matrix). In each polygon, I established three survey plots at least 

250 m apart and ≥100 m from a road or other discontinuity. I also surveyed locations with 

previous detections made by other observers, and made opportunistic playback surveys 

(not accompanied by point counts) at locations when potentially suitable habitat was 

encountered en route to designated survey polygons (e.g. roadside, border of non-target 

wetland).  

Surveys were conducted between sunrise and 1130h in fair weather conditions (no rain and 

wind <30 km/h). Each survey consisted of a 5-min unlimited-radius point count followed 

by a 30-s playback for each species, interspersed by 2-min listening periods (if the target 

species was detected, its listening period was extended to 5 min). Distance and direction 

was noted to adjust UTM coordinates to reflect actual bird location. In total, 337 surveys 

were completed, with Rusty Blackbird detected at 25 locations (19 novel detections, where 

the bird was not previously found), Olive-sided Flycatcher at 68 locations (42 novel), and 

Canada Warbler at 32 locations (15 novel). All field personnel and survey methods were 

certified under the Dalhousie University Animal Use Protocol 12-031 Mandatory Training 

for Wildlife. 

My detection locations were combined with those from other sources since 2008, including 

the Maritimes Breeding Bird Atlas, laboratory of Dr. Cindy Staicer (Dalhousie University), 

and other naturalists and ornithologists. Observations were filtered to remove spatial 
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overlap (observations of the same species in the same location) to identify unique known 

bird locations. 

2.2.3. Habitat surveys 

A subset of bird detection locations was selected for vegetation surveys. I used a random 

stratified design to select locations distributed across ecodistrict and two treatment types: 

occupancy and harvest condition. For occupancy, sites were either defined as ‘occupied’ 

or ‘unoccupied’ for a given species (e.g. a site at which only the Rusty Blackbird was 

located would be ‘occupied’ by Rusty Blackbirds, and ‘unoccupied’ for the other two 

species). All sites surveyed were occupied by one of the three SAR. Harvest condition was 

assigned based on 2009-2013 satellite imagery, with ‘harvest matrix’ sites having visible 

harvesting disturbance within 1 km, and ‘non-harvest matrix’ sites having no visible 

harvesting activity within 1 km. This was done to capture sites where a harvested condition 

may occur within the territory of the bird (or larger use area for conspecifics, in the case of 

Canada Warbler). Due to higher numbers of bird locations in some treatment conditions 

than others, equal sample sizes were not possible in each group. Vegetation surveys were 

carried out at 99 sites chosen from bird locations in July and August 2012 and 2013. At 

each site, a variable-radius forest inventory plot was established using a prism (basal area 

factor 2, as specified in Nova Scotia forest practices guidelines; McGrath 2013) at the GPS 

coordinates of the detection (or the most likely nesting habitat within 50 m of the 

coordinates if detailed location information was unavailable). Trees within the prism plot 

were classified according to canopy position (dominant, co-dominant, intermediate, or 

suppressed). Tree species, status (alive or dead), diameter at breast height, height of stem, 

height of bottom of the canopy, and an index of health were also recorded. 

From each inventory plot, two 50-m transects were sampled to capture variation across 

site. Transects were oriented at a minimum 90° angle from one another, in a randomized 

direction in potentially usable habitat for the target species (e.g., not directly into the centre 

of an open wetland or open clearcut). I established vegetation plots at 10-m intervals along 

each transect, including the centre point, for a total of 11 plots per site.  
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At each vegetation plot, four concave densiometer measurements were taken in each of the 

cardinal directions and averaged to provide a measure of canopy cover (Jennings et al. 

1999; Parker 2014). To capture structural complexity in the lower strata, percent live leaf 

cover was estimated for the shrub layer (shrubs and regenerating trees, 0.25 m – 5 m), 

herbaceous layer (plants <0.25 m), and ground layer (bryophytes, lichens, litter, and 

substrate). Fern measurements were included in the herbaceous layer. For the shrub layer, 

species, height and percent cover of all plants occupying >5% of a 4 m2 quadrat (2 m x 2 

m) was recorded. Although Nova Scotia’s FEC defines “woody shrubs and regenerating 

trees usually less than 2-m height, but occasionally taller” (Neily et al. 2011), I used a 

larger margin to capture regenerating trees suitable for Rusty Blackbird nesting in the shrub 

layer. For the herbaceous layer, the species and percent cover of all plants occupying at 

least 5% of a 1 m2 quadrat was recorded. Finally, all items occupying >5% of the ground 

layer of the 1 m2 plot were recorded (e.g. litter, coarse woody debris, mud). Plants were 

identified to species where possible, though sphagnum, some sedges, some asters, and 

some graminoids were only identified to genus or family.  

2.2.4. Statistical analyses 

Measurements for the 11 plots per site were averaged to calculate site means. Standard 

deviation of the 11 plots was calculated as an indicator of within-site heterogeneity, or 

habitat patchiness (Sorenson 2002). Standard deviation was used rather than the coefficient 

of variation, which only characterizes relative heterogeneity, and may not capture structural 

differences important to passerines (Bleho 2009). 

I collected information on the mean and standard deviation of 188 habitat variables 

(including composite variables, such as ALLFERNS – total fern cover) at each site. The 

188 variables were included in two datasets: one including site means, and the other 

standard deviations for each site. I completed data reduction in three iterative steps: 

exploratory analysis, multivariate testing, and between-groups hypothesis testing. In the 

exploratory analysis phase, I reduced the 188 initial variables to eliminate highly correlated 

variables. I used Indicator Species Analysis (ISA; Dufrene & Legendre 1997) to determine 

which of the 188 initial variables were significantly associated with a particular bird species 
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or treatment group (occupied vs. unoccupied; harvest matrix vs. non-harvest matrix). ISA 

generates an index of association with a particular group, termed an indicator value (IV). 

A perfect indicator for a given treatment would be faithful (always present) and exclusive 

(not present in other treatments). ISA evaluates variables by the standards of a perfect 

indicator, assigns an IV, and tests these values for significance by comparing them to IVs 

generated from randomized subsets of the data (McCune & Grace 2002). Variables that 

did not emerge as significant from the ISA, or were not deemed biologically important 

from review of the literature and expert opinion, were removed from analysis or combined 

into composite classes. For example, percent cover of individual bryophyte species that did 

not emerge as important (e.g. Pleurozium schreberi; Dicranum polysetum) were re-

classified into the summary variable MOSS, and the original variables for each individual 

species discarded from analysis. Remaining variables were assessed using factor analysis, 

and I further removed or reclassified variables with high correlations or low explanatory 

power.  

I retained variables that emerged as statistically important, along with those of known 

biological importance for the species from review of the literature and interviews with 

experts. The means and standard deviations of 50 habitat variables were retained for 

multivariate testing (Table 2.1).  

With a reduced suite of 50 variables, I examined multivariate differences between groups 

using multi-response permutation procedures (MRPP; Berry & Mielke 1984). MRPP is a 

non-parametric test for multivariate group differences (McCune & Grace 2002). I 

relativized the data by column total, ensuring both standard units between variables and to 

maximize the influence of proportions rather than absolute numbers (relative rates of 

change being more appropriate than absolute rates of change when some variables are 

observed in much higher abundance than others, McCune & Grace 2002). Using a 

Sorenson distance measure on relativized data (as Sorenson distance is less sensitive to 

outliers and performs more evenly across datasets with different levels of underlying 

diversity; McCune & Grace 2002), I compared means and standard deviations of habitat 

cover and structure variables across treatments (occupied vs. unoccupied sites for each bird 
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species; harvest matrix vs. non-harvest matrix for each bird species; and pairwise 

comparison between the three bird species). 

I used ISA on the reduced variable set (50 variables; Table 2.1) to identify habitat variables 

whose abundance and frequency were associated with a particular bird species or treatment. 

ISAs were conducted using 4999 randomized Monte Carlo runs. To compare means and 

standard deviations of relativized vegetation cover and habitat structure variables for each 

treatment, I computed non-metric multi-dimensional (NDMS) scaling (Kruskal 1964; 

Mather 1976) using Sorensen distance measures (McCune & Grace 2002). A random 

starting configuration was provided, with 250 runs of real data and 200 runs of randomized 

data. Ordination output was inspected for visual clustering between labelled groups 

(species). 

Finally, the variable set was further reduced to two final datasets for between-groups 

analysis: (1) 21 variables for cover and stand density, and (2) 9 tree and shrub heights 

(Table 2.1, fields marked with an asterisk, with shrub layer variable cover being used in 

the first dataset, and heights in the second). I retained variables that met any of the 

following criteria: easily-measurable composites (e.g. total moss cover), identified as 

significant indicators of occupied sites by ISA, or of known biological importance for one 

or more bird species. The final variable data set was intended for use in timber cruises and 

other forest management planning activities.  

To develop measurable guidelines for classifying potential habitat on the ground, I used 

classification and regression trees (CART), which partition treatments by the predominant 

features of their groups. For each species, the target group was occupied sites, and the 

independent variables were recursively partitioned using the Gini method to determine the 

best explanatory tree (McCune & Grace 2002). Cross-validation was applied with 25 

sample folds per analysis. Cross-validation was used rather than bootstrapping due to the 

relatively low sample size. For all three species, model growth was completed with a 

minimum parent group size of 30 and a minimum child group size of 6. The tree was limited 

to 4 levels and not pruned. Finally, individual habitat variables were compared between 
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occupied and unoccupied sites for each species, as well as between sites occupied by the 

three species using Mann-Whitney U-tests. 

For CART and Mann-Whitney U-tests, I used in SPSS 21.0 (IBM Corporation 2012). For 

ISA and NMDS, I used PC-ORD 5 (McCune & Mefford 2005). Due to the high number of 

variables and tests used, I set the significance level at α = 0.01 to minimize the likelihood 

of Type I error. 

2.3. RESULTS 

In 2012 and 2013, I assessed the vegetation of 99 wet forest sites, spanning 5 ecodistricts, 

occupied by one or more of three landbird species at risk (37 sites occupied by Rusty 

Blackbird, 45 by Olive-sided Flycatcher, and 38 by Canada Warbler; Table 2.2).  Although 

overall comparisons between ecodistricts of both habitat variable means and standard 

deviations showed significant differences (α = 0.01; Table 2.3), only 4 out of 20 pairwise 

comparisons revealed significant differences (ecodistrict 720 vs. 740 and 740 vs. 760; 

Table 2.4). As a result of small sample sizes in each ecodistrict, I judged that ecodistricts 

were similar enough to be assessed together.  

MRPP showed significant differences for both means and standard deviations of habitat 

variables for all three bird species when comparing sites occupied and those not occupied 

by a given bird species (Table 2.5). When sites were compared by harvest condition, both 

means and standard deviations of vegetation responses were significantly different (mean: 

A = 0.0050, P = 0.006; SD: A = 0.0063, P = 0.002). However, when comparing sites 

occupied by each individual species by harvest condition, no differences emerged 

(Table 2.5). 

2.3.1. Species-specific habitat associations 

 

ISA was used to examine the faithfulness and exclusivity of habitat cover and structure 

variables to occupied and unoccupied treatments for each species. Sites occupied by Rusty 

Blackbirds were indicated by higher relative frequency and abundance of mean cover of 

MUD and WATER, whereas high mean cover of DECSHR and SHRTOT was associated 
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with unoccupied sites (Table 2.6). Occupied sites were also indicated by high standard 

deviation of MUD, WATER, and AQUVEG. When habitat variables (Figure 2.2; 

Figure 2.3) were compared non-parametrically, the only variable exhibiting a significant 

difference for Rusty Blackbird was WATER (U = 887.5, P = 0.01), which was higher on 

occupied sites.  

ISA showed that Olive-sided Flycatcher-occupied sites were indicated by TREES<5 m and 

SNAGS<5 m, while unoccupied sites were indicated by mean CANOPY and ILEVER, as 

well as standard deviation of MAICAN and ILEVER (Table 2.6). K-W testing of means 

showed that Olive-sided Flycatcher-occupied sites were associated with lower CANOPY 

(U = 735, P = 0.002), higher SBA (U = 811, P = 0.005), and lower mean DECSHR height 

(U = 828, P = 0.009).  

Finally, variable means that were significantly indicative of occupied sites for Canada 

Warbler-occupied were OSMCIN, ALNINC, CANOPY, ILEMUC, and SPHAGNUM. 

Standard deviations significantly associated with occupied sites included OSMCIN, 

ALNINC, TOXRAD, and ILEMUC. Unoccupied sites were associated with higher mean 

and SD of DRYFER, and SD of CANOPY. Canada Warbler-occupied sites had 

significantly more CANOPY cover (U = 679, P < 0.01), higher mean cover of OSMCIN 

(U = 684, P <0.01), higher mean cover of ALNINC (U = 641, P < 0.01), and higher mean 

DECSHRHT (U = 634, P < 0.01). 

CART analysis was used to identify site conditions association with occupancy by each 

species. The model predicted unoccupied sites well for the Rusty Blackbird (95% correct), 

but only correctly predicted occupied sites in 41% of cases, for an overall success rate of 

75%. Rusty Blackbird occupancy was primarily explained with water cover, as all sites 

with >11% mean cover of WATER were occupied. For sites with a lower mean cover of 

water, a higher proportion of remaining occupied sites were associated with a lower cover 

of PICTOT (40% of sites with <5.5% mean cover of PICTOT were occupied, as compared 

to 6% with >5.5% mean cover of PICTOT).  
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Occupancy of Olive-sided Flycatcher was associated with site having a mean SBA <= 13 

m2, with 70% of sites exhibiting this feature being occupied. For sites that had a higher 

stand basal area than this threshold, all sites with >5.2 TREES<5 m were occupied. 

Unoccupied sites were correctly predicted in 76% of cases, and occupied sites correctly 

predicted in 78% of cases, with overall model classification success of 75%.  

Canada Warbler-occupied sites were associated with OSMCIN cover, as 66% of sites with 

>7.5% OSMCIN cover were occupied (as compared to only 20% of sites below this 

threshold). For sites with >7.5% OSMCIN cover, likelihood of occupancy increased with 

number of deciduous trees >5 m. Of sites with >7.5% and >0.9 DECTREE>5, 80% were 

occupied by Canada Warbler. The model classified unoccupied sites correctly in 90% of 

cases, and occupied sites correctly in 63% of cases, for an overall success rate of 80%.  

2.3.2. Comparisons between harvest treatments and species 

When testing harvest treatments for significant associations using ISA, there were few 

habitat cover means significantly indicative of harvest condition for any bird species. The 

exceptions were KALANG mean and standard deviation being significant for Rusty 

Blackbird-occupied sites in harvest matrices, and SHRTOT and TREES<5 being 

significant for Canada Warbler-occupied sites in harvest matrices (Table 2.7).  

In general, when comparing all sites by harvest treatment using ISA, those in harvest 

matrices were significantly indicated by means of KALANG, ACERUB, debris, and 

CON<5, as well as standard deviation of KALANG, DEBRIS, SHROT, ACERUB, 

DECSHR, TREES<5, CON<5, VIBNUD. No particular variables emerged as significant 

indicators of sites in non-harvest matrices. When sites occupied by each of the three species 

were compared to each other using MrPP, significant differences emerged overall for 

means and standard deviations (Table 2.8; Table 2.9). When compared pairwise, means 

between Canada Warbler and the other two species significantly differed in mean habitat 

cover, with Canada Warbler differing from both Rusty Blackbird and Olive-sided 

Flycatcher in standard deviation of habitat cover. Olive-sided Flycatcher and Rusty 

Blackbird did not significantly differ. 
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When sites occupied by three species were compared to one another using ISA, Rusty 

Blackbird sites were associated with a suite of forest structure variables, whereas Olive-

sided Flycatcher sites were significantly indicated by mean cover of GAYBAC 

(Table 2.10). Canada Warbler-occupied sites were significantly indicated by cover and 

standard deviation of VIBNUD.  

NMDS converged on a 2-dimensional solution, and ordination showed no clear grouping 

between sites occupied by each of the species (Figure 2.4). The final solution was 

significantly different than that which could have been obtained by chance for both 

dimensions (axis 1: data mean = 48.1, randomized mean 51.2, P < 0.01; axis 2, data mean 

= 27.0, randomized mean 33.8, P < 0.01). 

2.4. DISCUSSION 

In general, relative abundances of breeding forest birds are better predicted by forest 

structure than cover type or size class of trees (e.g. birds in New England forests; DeGraaf 

et al. 1998). However, in my study, habitat variables reflecting both vegetation and 

structure emerged as important, including particular plant species as well as structural 

features such as stand basal area and canopy cover. 

Differences emerged between occupied and unoccupied sites for these three SAR in wet 

forest habitats. Mud and water were important in sites occupied by Rusty Blackbird, which 

has been documented in other regions (Matsuoka et al. 2010a; Powell et al. 2010a; Avery 

2013a).  Unlike other studies, coniferous trees in the shrub layer and small conifers in the 

tree layer did not emerge as significant, and sites with lower total frequency and cover of 

spruce trees were more likely to be occupied. The latter may have been a product of my 

forest inventory method (variable radius prism plot), which includes fewer small trees if 

they are at low density, as well as the effect of sampling across a larger transect rather than 

focusing only on nest sites. High deciduous shrub cover was associated with unoccupied 

sites for both Rusty Blackbirds and Olive-sided Flycatchers, results consistent with 

coniferous forest habitat associations reported in other parts of their range (Altman & 

Sallabanks 2010; Avery 2013b). 
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Sallabanks et al. (2006) found canopy cover to be an important proximate structural 

mechanism driving the distribution and abundance of Olive-sided Flycatchers. In my study, 

canopy cover was important for both Olive-sided Flycatcher and Canada Warbler, with the 

former being associated with more open canopies and a higher stand basal area, indicating 

a patchy, open condition of larger trees, while Canada Warbler-occupied sites had higher 

canopy coverage. Capturing structural complexity in the lower strata is particularly 

important for Canada Warblers (Lambert & Faccio 2005; Hallworth et al. 2008b; Reitsma 

et al. 2013). High shrub stem density is critical for breeding Canada Warblers (Flockhart 

& Range 2007; Hallworth et al. 2008a), though in Nova Scotia cinnamon fern (Osmunda 

cinnamomea) in conjunction with dense shrubs may provide a similar role, like 

rhododendrons in the southern extent of their breeding range (Reitsma et al. 2010). Hunt 

et al. (2015) found higher shrub density in observed locations as compared to unused 

locations, which was consistent with my results. My results also indicated a mixedwood 

condition based on the presence of deciduous shrubs and trees. 

As my habitat measurements did not differ significantly between occupied sites in harvest 

vs. non-harvest matrices, structural and vegetation features important for habitat use are 

retained in the context of forest management. Sites occupied by focal species in harvested 

landscapes included leave patches and buffers around clearcuts, containing remnant 

wetland edges and unharvested wet forest habitat strips adjacent to disturbed areas. Other 

studies have documented the use of both managed and unmanaged areas for these species 

(Powell et al. 2010b; Hunt et al. 2015). Rusty Blackbirds may equally prefer to nest in 

managed and unmanaged landscapes (Powell et al. 2010b). Canada Warblers have been 

documented to be equally abundant in both shelterwood and clearcuts, particularly in a 

matrix including mature forest (King & DeGraaf 2000). They have also been found in 

higher densities in post-harvest areas than in post-fire areas, presumably due to affinity for 

a dense shrub layer (Hobson & Schieck 1999).  

To maintain occupancy in managed landscapes, harvesting practices need to ensure 

maintenance and/or creation of favourable structural habitat conditions. Lambert & Faccio 

(2005)’s extensive stewardship guidelines for CAWA in northeastern US forests include 
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retaining areas of high shrub density, understory foliage (including ferns), and a 

structurally complex forest floor. However, for all three species, habitat associations 

change across their ranges (for region-specific habitat descriptions, see Altman & 

Sallabanks 2010; Reitsma et al. 2010; Avery 2013), and as such, management prescriptions 

need to be regionalized.  

On a landscape scale, harvested lands can support a broad array of bird species (Becker et 

al. 2011). As Olive-sided Flycatchers forage from the edges of older stands into open 

wetlands or clear-cuts, this species may persist in fragmented landscapes where mature 

forest is juxtaposed with early seral stages (DeGraaf & Yamasaki 2003). In natural 

conditions, where Rusty Blackbirds use muddy open areas adjacent to wet forest for 

foraging, identifying and managing the necessary degree of habitat heterogeneity may be 

an important component of retaining these species on the landscape (Chambers 1999). 

In the Nova Scotian context, maintenance of wet forest areas may be preferable to creating 

early seral stage habitat. In the SNBR, all three species are associated with wet areas and 

wet habitat features. When habitat variables were considered together, the combined 

habitat response did not significantly differ between Olive-sided Flycatcher and Rusty 

Blackbird, and both species use wet coniferous sites. Conserving these species in tandem 

may be possible as long as key individual habitat needs (e.g. areas of mud and open water 

for Rusty Blackbird, mature coniferous edges for Olive-sided Flycatcher) are met and 

prioritized in the management approach.  

Horizontal variation in habitat features, as measured by their standard deviation, was 

frequently important for Canada Warbler, and significantly different from that of the other 

two species. This suggests more heterogeneous structure across the site. This is likely 

related to the different territory sizes: Canada Warbler territory sizes are approximately 1 

ha, with size depending on habitat quality (Reitsma et al. 2008; Hunt et al. 2015), and the 

100-m transect distance across the landscape where I measured habitat characteristics may 

have exceeded an individual territory, suggesting more heterogeneous patches across the 

site in areas adjacent to the territory. On the other hand, Olive-sided Flycatchers and Rusty 

Blackbirds have territories or home ranges 10-20 ha in size (Altman & Sallabanks 2010; 
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Powell et al. 2010a). As their territories greatly extend beyond a 50 m radius, they will be 

patchy, and may include smaller mixedwood wet forest components suitable for Canada 

Warbler.  

At present, cutting regulations in Nova Scotia mandate retaining small leave patches (10 

trees per hectare cut), clustered near the edge of the cut, and riparian buffers of 20-60 m 

depending on the width of the watercourse (Province of Nova Scotia 2002). To encompass 

nesting habitat of all three species at risk, I recommend riparian and wetland buffers be 

extended to minimum of 100 m around cuts, though 250 m would be preferable to include 

one or more complete territories, minimize crowding, protect from upland predators, and 

limit edge effects (Powell et al. 2010b). Wet forest areas are not currently protected by law, 

but are often poor operating environments for harvesting. Habitat features identified as 

important for these Rusty Blackbird and Canada Warbler (e.g. mud puddles, open water, 

cinnamon fern, complex ground structure) could be compromised by the impact of 

harvesting machinery on soils. Under current buffer regulations, trees and snags identified 

as important for the Olive-sided Flycatcher would be removed from the landscape in and 

around wet areas. Existing leave patches would likely not be large enough to retain habitat 

for these species, particularly the Olive-sided Flycatcher and Rusty Blackbird, who are 

using predominantly treed areas with openings within a larger forest matrix. 

For Canada Warblers in Alberta, preserving riparian buffers is thought to be more 

important than maintaining residual patches for mitigating effects of forest harvesting 

(Hunt et al. 2015). Given the similarities in wet forest habitat near clear-cuts for the other 

two species, this seems likely true for Olive-sided Flycatchers and Rusty Blackbirds in the 

SNBR. Conserving or managing for the two species with larger territories may in some 

landscapes capture Canada Warbler habitats within, though ground verification would be 

needed to assess for habitat features specifically associated with Canada Warbler. 

Although my study suggests that occupied sites in managed and protected forest landscapes 

have few vegetation differences that are important for the three species, this does not mean 

the habitat is equally suitable. Habitats in managed landscapes may be functionally 

different in ways that reduce fitness. In New England, Rusty Blackbird nests found in 
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harvested sites (<20 years since cutting) were concentrated in more upland terrain and 

contained less standing water, which is known to be an important source of invertebrates 

for feeding (Powell et al. 2010b). Rusty Blackbird nests in harvested areas are more than 

twice as likely to fail, predominantly due to predation (Powell et al. 2010b). Increased nest 

predation, as a result of forestry practices, may be a significant factor for bird populations, 

particularly when it facilitates access by generalist predators (Darveau et al. 1997).  

The ecological trap hypothesis posits that organisms experiencing lower success in one 

habitat type will not perceive differences in success at the time of selection, and 

preferentially choose the poorer habitat (Villard et al. 2007). A equal-preference version of 

this hypothesis has been suggested for both Rusty Blackbird and Olive-sided Flycatcher 

(Powell et al. 2010b; Robertson & Hutto 2013), suggests that nests in proximity to timber 

harvest are both less productive and less successful. Such effects have been documented in 

other bird species: forest harvesting can result in higher nest predation rates (Hoover et al. 

1995), and increased competition for resources. It can also reduce availability of arthropods 

(Duguay et al. 2000). In nearby New Brunswick, harvesting has been implicated in longer 

breeding dispersal distances for Black-throated Blue Warbler (Dendroica caerulescens) 

and Blackburnian Warbler (Dendroica fusca) (Betts et al. 2006b). When a forestry-

mediated ecological trap hypothesis was explicitly tested for interior species in this region, 

it was disproved as there were no reductions in productivity for populations in managed 

areas (Villard et al. 2012). However, the problem may still be salient for the Rusty 

Blackbird and Olive-sided Flycatcher given their use of edge habitats. Canada Warblers 

use interiors and edges, and may also experience an ecological trap effect. Males nesting 

in post-harvest stands have larger range sizes than those in unharvested areas, suggesting 

they required a larger area to meet foraging requirements (Hunt et al. 2015). However, in 

Alberta, fledging success did not differ between managed and protected areas (Hunt et al. 

2015).   

The present study assessed habitat only, and did not locate nests or monitor breeding 

success. As such, I cannot draw any conclusions about individual fitness in managed or 

unmanaged habitats. Finally, field study of nests is needed to assess reproductive success 
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in managed and unmanaged habitats in the SNBR, as well as assess the impact of retaining 

forest buffers on populations on these species. Further study should be given to the effects 

of habitat fragmentation (Villard & Metzger 2014), as patch size effects are most 

pronounced for interior species and least pronounced for edge species (Bender et al. 1998). 

Future work should also include population modeling, including sources and sinks based 

on field-collected demographic data, to determine if modified habitats serve as ecological 

traps (Donovan & Thompson 2001).  
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2.5. TABLES AND FIGURES 

Table 2.1 Reduced set of habitat variables measured at sites occupied by one or more 

of the target species (Rusty Blackbird, Olive-sided Flycatcher, or Canada 

Warbler) in harvested areas and non-harvested areas in the Southwest Nova 

Biosphere Reserve, Nova Scotia. 

 

Vertical 

Layer Mnemonic Description 

Canopy 

% Cover 

CANOPY* Cover in the overstory canopy measured by a densiometer 

Ground 

% Cover 

DEBRIS* Total of downed woody material, including fine and coarse 

woody debris 

MUD* Mud, or damp soil/bare ground that would become muddy in wet 

conditions 

ROCK Exposed bare rock, including boulders and talus 

LICHEN All lichen species 

WATER* Open water or puddle 

Herbs 

(<0.25m) 

%  Cover 

MOSS All moss species except HYLSPL, HYPNUM, and SPHAG 

HYLSPL Stair-step moss (Hylocomium splendens) 

HYPNUM Hypnum spp. mosses 

SPHAGN* Sphagnum spp. mosses 

AQUVEG Aquatic vegetation growing in open water 

OSMCIN* Cinnamon fern (Osmunda cinnamomea) 

PTEAQU Bracken fern (Pteridium aquilinum) 

WOOVIR Virginia chain fern (Woodwardia virginica) 

DRYFER Ferns associated with mesic to dry habitats, excluding PTEAQU 

WETFER All ferns of wet habitats, excluding OSMCIN and WOOVIR 

GRASS Grasses (species in family Poaceae) 

HERBAC* All herbaceous species, summed 

MAICAN Wild lily-of-the-valley (Mainthemum canadense) 

TOXRAD Poison ivy (Toxicodendron radicans) 

VACTOT Blueberry spp. (esp. Vaccinium angustifolium), summed 

VIOLSP Violets (Viola spp.), summed 

JUNEFF Common rush (Juncus effuses) 

CARTRI Three-seeded sedge (Carex trisperma) 

SEDRUS Sedge and rush species, summed 
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Vertical 

Layer Mnemonic Description 

Shrub 

Layer 

(0.25-

5m) % 

and 

Height 

CONSHR* Coniferous trees in the shrub layer, totalled 

ABIBAL Balsam fir (Abies balsamifera) 

PICMAR Black spruce (Picea mariana) 

PICRUB Red spruce (Picea rubens) 

PICTOT* All spruce (Picea spp.), summed 

DECSHR* Broad-leaved plants in the shrub layer, summed 

ACERUB* Red maple (Acer rubrum) 

ALNINC* Speckled alder (Alnus incana rugosa) 

CHACAL Leatherleaf (Chamaedaphne calyculata) 

GAYBAC Black huckleberry (Gaylussacia baccata) 

ILEMUC* False holly (Ilex mucronata) 

ILEVER Canada holly (Ilex verticellata) 

KALANG Lambkill (Kalmia angustifolia) 

RHOCAN Rhodora (Rhododendron canadense) 

RHOGRO Bog Labrador tea (Rhododendron groenlandicum) 

VIBNUD* Wild raisin (Viburnum nudum var. cassinoides) 

SHRTOT* All shrub layer plants, summed 

Stand 

Density 

TREEHT* Mean height of all trees in forest inventory plot 

SBA* Basal area calculated from all prism plots 

CONTREE<5* Number of softwood trees <5m tall in all prism plots 

CONTREE>5* Number of softwood trees >5m tall in all prism plots 

DECTREE<5* Number of hardwood trees <5m tall  in all prism plots 

DECTREE>5* Number of hardwood trees >5m tall in all prism plots 

SNAG<5* Number of standing dead trees <5m tall in all prism plots  

SNAG>5* Number of standing dead trees >5m tall  in all prism plots  

*Variables retained for Kruskal-Wallis and Classification and Regression Tree tests 
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Table 2.2.  Number of sampled sites occupied by Rusty Blackbird (RUBL), Olive-

sided Flycatcher (OSFL) and Canada Warbler (CAWA) in each ecodistrict 

and treatment class. 

 

Species Treatment 

Sites 

sampled 

Ecodistrict 

720 730 740 750 760 

RUBL Total 37 15 3 13 5 1 

 Harvest Matrix 21 12 2 6 1 0 

  Non-Harvest Matrix 16 3 1 7 4 1 

OSFL Total 45 17 4 15 3 6 

 Harvest Matrix 26 15 2 5 0 4 

  Non-Harvest Matrix 19 2 2 10 3 2 

CAWA Total 38 12 5 12 3 6 

 Harvest Matrix 18 3 2 11 1 1 

  Non-Harvest Matrix 20 9 3 1 2 5 

Total Total 99 34 11 33 10 11 

 Harvest Matrix 54 28 7 9 3 7 

  Non-Harvest Matrix 45 6 4 24 7 4 

 

 

Table 2.3:  Results of multi-response permutation procedure testing for mean and 

standard deviation of 53 vegetation response variables across ecodistricts. 

A = Chance-correct within-group agreement. 

 

Variable 

Type 

Number of samples in ecodistrict 

A P 720 730 740 750 760 

Mean 34 33 11 10 11 0.0157 <0.001 

SD 34 33 11 10 11 0.0199 <0.001 
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Table 2.4:  Results of pairwise comparisons from multi-response permutation 

procedure testing for mean and standard deviation of 53 habitat variables 

across ecodistricts. A = Chance-correct within-group agreement. 

 

Responses 

Ecodistrict 

Pairwise 

Comparisons  A P 

Holm-

Bonferroni 

adjusted P 

Mean 

 

720  vs.    740  0.0120 <0.001 0.003 

740  vs.    760  0.0206 0.001 0.005 

750  vs.    760  0.0266 0.006 0.048 

730  vs.    760  0.0218 0.011 0.074 

720  vs.    760  0.0095 0.017 0.101 

720  vs.    750  0.0088 0.018 0.101 

740  vs.    730  0.0036 0.180 0.718 

720  vs.    730  0.0003 0.429 1.000 

740  vs.    750  -0.0011 0.548 1.000 

730  vs.    750  -0.0035 0.627 1.000 

SD 

 

720  vs.    740  0.0141 <0.001 <0.001 

740  vs.    760  0.0250 <0.001 <0.001 

750  vs.    760  0.0309 0.003 0.027 

720  vs.    760  0.0123 0.005 0.032 

730  vs.    760  0.0233 0.007 0.042 

720  vs.    750  0.0107 0.009 0.044 

740  vs.    730  0.0045 0.141 0.563 

740  vs.    750  0.0025 0.255 0.766 

730  vs.    750  0.0040 0.295 0.766 

720  vs.    730  0.0004 0.415 0.766 
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Table 2.5:  Results of multi-response permutation procedure testing for mean and 

standard deviation of 53 habitat variables for Rusty Blackbird (RUBL), 

Olive-sided Flycatcher (OSFL), and Canada Warbler (CAWA), compared 

across site conditions of occupancy and harvest matrix. Column title 

abbreviations: O = Occupied, UO = Unoccupied, A = Chance-correct 

within-ground agreement, H = Harvest matrix, NH = Non-harvest matrix. 

 

Species Type 

n 

A P 

n 

A P O UO H NH 

RUBL Mean 37 62 0.0099 <0.001 21 16 0.0027 0.235 

SD 37 62 0.0075 <0.001 21 16 0.0040 0.159 

CAWA 

 

Mean 38 61 0.0131 <0.001 20 18 0.0077 0.054 

SD 38 61 0.0124 <0.001 20 18 0.0084 0.037 

OSFL 

 

Mean 45 54 0.0083 <0.001 19 26 -0.0009 0.555 

SD 45 54 0.0067 0.001 19 26 0.0004 0.413 

 

Table 2.6:  Indicator values (IV) from indicator species analysis (ISA) using the mean 

and SD of habitat variables measured for sites occupied by the Rusty 

Blackbird (RUBL; n = 37, occupied, and n = 62, unoccupied), Olive-Sided 

Flycatcher (OSFL; n = 45, occupied, and n = 54, unoccupied), and Canada 

Warbler (CAWA; n = 38, occupied, and n = 61, unoccupied) in the 

Southwest Nova Biosphere Reserve. Group identifies whether sites that 

were occupied (O) or unoccupied (UO) had the maximum indicator value 

(IV). Only significant ISA results are shown. 

 

Species Type Variable 

Group 

of 

Max 

IV 

Observed 

IV 

Randomized 

Groups IV 

P O UO 

Mean 

IV SD 

RUBL Mean SHRTOT% UO 36 64 53.2 2.46 <0.001 

DECSHR% UO 33 64 52.4 3.01 0.002 

WATER O 24 1 10 2.91 0.001 

MUD O 46 13 31.3 4.51 0.009 

SD MUD O 50 13 32.9 4.12 0.001 

WATER O 25 1 11.2 3.01 0.001 

AQUVEG O 14 0 5.1 2.09 0.006 
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Species Type Variable 

Group 

of 

Max 

IV 

Observed 

IV 

Randomized 

Groups IV 

P O UO 

Mean 

IV SD 

OSFL Mean Canopy UO 56 44 51.3 1.21 <0.001 

ILEVER% UO 23 0 12.1 3.33 0.009 

SNAG<5 O 26 61 47.4 4.17 0.005 

TREES<5 O 34 60 51 3.15 0.007 

SD MAICAN UO 32 4 19.4 3.47 0.006 

ILEVER% UO 26 1 14.3 3.53 0.006 

         

CAWA Mean DRYFER UO 56 15 39.7 4.25 0.004 

OSMCIN O 12 64 36 4.25 <0.001 

ALNINC% O 7 54 28.5 4.3 <0.001 

Canopy O 45 55 51.3 1.24 0.003 

ILEMUC% O 5 36 21.8 4.13 0.004 

SPHAGN O 37 59 50.9 2.69 0.007 

SD CANOPY UO 60 40 52.4 1.99 0.002 

DRYFER UO 54 22 42.5 3.67 0.007 

OSMCIN O 17 58 37.5 3.77 <0.001 

ALNINC% O 9 52 29.1 3.95 <0.001 

TOXRAD O 5 30 18 3.58 0.005 

ILEMUC% O 9 39 24.7 4.02 0.006 
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Table 2.7:  Indicator values (IV) from indicator species analysis (ISA) using the mean 

and SD of habitat variables measured for sites occupied by Rusty Blackbird 

(n = 21, harvest, and n = 16, non-harvest), Canada Warbler (n = 20, harvest, 

and n = 18, non-harvest), and Olive-sided Flycatcher (n = 26, harvest, and 

n = 19, non-harvest) in the Southwest Nova Biosphere Reserve. Group 

identifies whether harvested (H) or non-harvested (NH) landscapes had the 

maximum indicator value (IV). Only significant ISA results are shown. 

 

Species Type Variable 

Group of 

Max IV 

Observed 

IV 

Randomized 

Groups IV 

P H NH Mean SD 

RUBL Mean KALANG% H 70 9 42.2 6.89 0.001 

SD KALANG% H 70 9 42.3 6.69 0.001 

CAWA SD SHRTOT% H 39 61 53.1 2.41 0.001 

TREES<5 H 31 69 55.1 3.89 0.002 

ALL Mean KALANG% H 62 12 39.3 4.36 <0.001 

ACERUB% H 64 14 42.7 4.82 <0.001 

Debris H 63 32 51.2 3.32 0.003 

CON<5 H 56 19 40.7 3.91 0.004 

SD KALANG% H 64 12 38.8 3.95 <0.001 

DEBRIS H 63 34 51.7 2.93 0.001 

SHRTOT% H 59 41 52.2 1.82 0.001 

ACERUB% H 58 13 38.1 4.58 0.002 

DECSHR% H 60 38 51.9 2.32 0.003 

TREES<5 H 60 33 50.1 2.86 0.003 

CON<5 H 54 21 40.5 3.71 0.004 

VIBNUD% H 36 5 23.3 4.14 0.007 
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Table 2.8:  Results of multi-response permutation procedure tests comparing mean and 

standard deviation of vegetation variables for sites occupied by Rusty 

Blackbird (RUBL), Olive-sided Flycatcher (OSFL), and Canada Warbler 

(CAWA). 

 

Variable Type 

n Chance-correct 

within-group 

agreement (A) P RUBL OSFL CAWA 

Mean 37 45 38 0.0108 <0.001 

SD 37 45 38 0.0134 <0.001 

 

 

Table 2.9:  Results of pairwise comparisons in multi-response permutation procedure 

tests comparing mean and standard deviation of habitat variables for sites 

occupied by Rusty Blackbird (RUBL), Olive-sided Flycatcher (OSFL), and 

Canada Warbler (CAWA). 

 

Pairwise 

Comparisons 

Variable 

Type A P 

Holm-

Bonferroni 

adjusted P 

RUBL vs CAWA Mean 0.0133 <0.001 <0.001 

RUBL vs OSFL Mean 0.0070 0.006 0.012 

OSFL vs CAWA Mean 0.0050 0.025 0.024 

RUBL vs CAWA SD 0.0159 <0.001 <0.001 

OSFL vs CAWA SD 0.0090 0.004 0.008 

RUBL vs OSFL SD 0.0062 0.027 0.027 
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Table 2.10:  Indicator values (IV) and significant results of indicator species analysis for 

means and standard deviations of habitat variables when comparing sites 

occupied by Rusty Blackbird (RUBL, n = 37), Olive-sided Flycatcher 

(OSFL; n = 45,) and Canada Warbler (CAWA; n = 38) in the Southwest 

Nova Biosphere Reserve.  

 

Type Variable 

Species 

of Max 

IV 

Observed IV 

Randomized 

Groups IV 

P RUBL OSFL CAWA MEAN SD 

Mean TREES>5 RUBL 46 30 23 36.6 1.94 <0.001 

SBA RUBL 41 34 24 35.3 1.32 0.001 

SNAG<5 RUBL 51 18 18 34.6 3.76 0.001 

SNAG>5 RUBL 49 22 12 33.8 3.77 0.001 

CON>5 RUBL 43 29 24 35.6 2.01 0.002 

TREES<5 RUBL 44 29 22 36.2 2.62 0.004 

GAYBAC OSFL 2 29 7 16.6 3.73 0.006 

VIBNUD CAWA 4 1 35 14.6 3.63 <0.001 

SD SNAG<5 RUBL 45 20 22 33.4 3.01 0.004 

VIBNUD CAWA 5 2 40 17.3 3.65 <0.001 
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Figure 2.1:  The five counties of the Southwest Nova Biosphere Reserve (outlined in 

black), with protected areas shaded in green. Indicated by symbols are sites 

sampled for vegetation composition and structure in known locations of 

Rusty Blackbird (RUBL; red squares), Olive-sided Flycatcher (OSFL; 

green triangles), and Canada Warbler (CAWA; yellow circles). 
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Figure 2.2:  Boxplots showing distribution of mean canopy cover (CANOPY, top row) and mean stand basal area (SBA, bottom row) 

in 99 sites unoccupied (group = 0) and occupied by (group = 1) the Rusty Blackbird (RUBL; red), Olive-sided Flycatcher 

(OSFL; green), and Canada Warbler (CAWA; yellow) in the Southwest Nova Biosphere Reserve. 
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Figure 2.3:  Boxplots showing distribution of mean cover of Osmunda cinnamomea (OSMCIN, top row) and mean height of 

deciduous shrubs (DECSHR, bottom row) in 99 sites unoccupied (group = 0) and occupied by (group = 1) the Rusty 

Blackbird (RUBL, red), Olive-sided Flycatcher (OSFL, green), and Canada Warbler (CAWA, yellow) in the Southwest 

Nova Biosphere Reserve 
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Figure 2.4:  Ordination of final solution generated for means of habitat variables in sites 

occupied by Rusty Blackbird (n = 37, red squares), Olive-sided Flycatcher 

(n = 45, green triangles) and Canada Warbler (n = 38, yellow circles) in the 

Southwest Nova Biosphere Reserve. Solution generated by non-metric 

multidimensional scaling using 250 runs from random seed. 
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CHAPTER 3 GIS AND FOREST ECOSYSTEM 

CLASSIFICATION FOR MANAGEMENT 

PLANNING 

 

3.1. INTRODUCTION 

 

Forest managers often strive to conserve for wildlife values as part of sustainable forest 

management. This is particularly true for SAR, whose habitats or breeding sites may be 

legally protected. Typically, timber cutting operations are planned at using information at 

the scale of individual forest stands (1-10 ha), characterized by forest cover contiguous in 

species and age, subject to the same forest processes of growth, mortality, and competition 

(Neily et al. 2011; Wang et al. 2014), using GIS layers describing forest cover and 

disturbance. It is common for stand type to be field-verified before cutting, which typically 

includes on-the-ground timber cruises and forest ecosystem classification (FEC). Forest 

management plans that seek to mitigate impacts on SAR typically use GIS modeling of 

habitat or direct field surveys, assuming that SAR habitat can be adequately identified by 

classification tools used for stand-scale management. 

 

In Nova Scotia, Canada, conservation planning is ongoing for three federally-listed 

landbird SAR that rely on wet forest habitat during the breeding season (Rusty Blackbird, 

Olive-Sided Flycatcher, and Canada Warbler; COSEWIC 2006, 2007, 2008; Government 

of Canada 2011). These species occupy areas that are protected as well as managed, 

including lands in and adjacent to recent forest harvesting. In the Maritimes, all three 

species commonly nest in or near wet forests to meet their insectivorous foraging 

requirements (Altman & Sallabanks 2010; Reitsma et al. 2010; Avery 2013). 

 

Commonly employed in both forest management planning and conservation ecology, GIS 

analyses are used for assessing land cover (e.g. Rooney et al. 2012), predicting species 

distributions (e.g. Cumming et al. 2010; Barker et al. 2014), and designing management 
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plans for species at risk (e.g. Akçakaya 2001; Beazley et al. 2005). GIS layers that classify 

forest characteristics can be used to describe habitat preferences for species, which are one 

the best ways to predict presence and abundance of bird species (Riffell et al. 2006). In 

Nova Scotia, GIS layers describing forest cover and Ecological Land Classification (ELC) 

have been used for SAR conservation planning (Beazley et al. 2005; Cameron & Neily 

2008), including for these three SAR (Ferrari 2014; Westwood et al. 2015; Bale et al. in 

prep). However, before engaging in conservation activities based on GIS-derived models, 

it is important to understand potential sources of error governing their predictive inputs 

(Rooney et al. 2012), and how well they can describe habitat features for species under 

consideration. Furthermore, as different taxa interact with their environments at different 

spatial extents (Addicott et al. 1987), predictive relationships may be scale-dependent. 

Suitable GIS layers may not be available, or lack sufficient accuracy, to capture habitat 

features at the required scale.  

 

3.1.1. Sources of error in GIS data for forest management 

 

Despite their common use, GIS data are vulnerable to unreliability due to high levels of 

error (Bruce et al. 1997). When using these tools for management or conservation, it is 

important to know if available spatial data layers are accurate at capturing habitat features 

for SAR. At large scales, ecosystem mapping and classification often rely on remote 

sensing or photointerpretation. However, the best methods of classification only yield an 

average accuracy of approximately 80% (Johansen et al. 2007), commonly due to 

interpreter error or lack of definition in the images.  

 

For the Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler in particular, 

characterizing wet forest types accurately is important. These are often poorly represented 

in GIS data (Klemas 2011; Kreakie et al. 2012) and their accuracy can fluctuate widely due 

to the ephemeral nature of many types of wetland (Gómez-Rodríguez et al. 2008; Skagen 

et al. 2008). Identifying wet forested areas using remote sensing is challenging because 

they tend to be small and patchy (Klemas 2011), and difficult to differentiate from upland 

forest (Riffell et al. 2006). Particularly for species using wet forest habitats, it is important 
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to verify the accuracy of relevant spatial data layers before using models or mapped 

conservation products based on these layers.  

 

3.1.2. A field-based verification and conservation tool 

 

FEC is a tool originally developed for use by woodlot owners and forest managers to 

describe forest conditions, by field based stand-level categorization of forest ecosystems 

into coherent groups. Nova Scotia’s FEC system uses dichotomous keys to allow a user to 

classify vegetation type and soil type for a field site, which is then used as a proxy for 

nutrient and moisture regime (Neily et al. 2011). These groups are used to inform 

harvesting and silvicultural management (e.g. Keefe & Mcgrath 2006; McGrath 2011). 

FEC has been applied to other ecological uses, such as forest fire and disease management 

(McRae 1996; Wiensczyk et al. 1996), but rarely to wildlife management (but see Bowman 

et al. 1996; Malcom et al. 2004; Aldridge & Boyce 2007). 

 

Nova Scotia’s FEC is unique compared to that of other jurisdictions in that it describes 

broad forest communities, including understory vegetation, cryptograms, and wildlife, as 

well as integrates directly into Canada’s Ecological Land Classification (ELC) framework. 

ELC categorizes ecosystems based on climate and vegetation at a variety of scales, ranging 

from the regional extent (ecozones) down to the stand level (ecosections and ecosites; 

Ecological Stratification Working Group 1995). At the stand scale, management 

applications include forest planning, wood supply modeling, and silvicultural planning, 

among others (Neily et al. 2003). Nova Scotia’s FEC, as part of the ELC, is currently used 

in forest management prescriptions on both public and private lands (Stewart & Neily 

2009; McGrath 2011). However, the capacity of FEC to characterize and manage wildlife 

habitat has not been formally investigated. 

 

Additionally, as part of the ELC system, Nova Scotia’s FEC can be used to collect 

reference data on forest cover and soil characteristics. This information can be used as 

reference data to ground-verify GIS layers for ELC and forest cover (derived from the 

provincial Forest Inventory Database; FID). ELC has been mapped in Nova Scotia down 
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to the level of ecosection (Neily et al. 2003), which includes soil texture and drainage. If 

FEC categories can be directly correlated to habitats for species at risk, they could also be 

used as an on-the-ground conservation tool by managers already engaging in FEC 

classification for forestry purposes. 

 

My objectives were to (1) determine if habitat occupied by three landbird species at risk 

was associated with particular FEC forest groups, vegetation types, soil types, and ecosites; 

(2) investigate the accuracy rate of spatial datasets commonly used for forestry and 

conservation planning in habitats occupied by these species at risk through comparison of 

GIS datasets to field-collected FEC information; and (3) evaluate the potential of Nova 

Scotia’s FEC system as a descriptor of habitat for these species, and assess management 

implications in a context of spatially inaccurate GIS layers.  

 

3.2. METHODS 

 

Field data were collected in the SNBR (1,546,374 ha, 65°24’7” W, 44°13’58 N). The 

SNBR is in the western ecoregion of Nova Scotia, characterized by a Maritime climate, 

and predominantly coniferous forest with associations of pine, spruce, and hemlock (Neily 

et al. 2008). The disturbance regime is characterized by small gaps created through 

windthrow, often due to the influence of hurricanes. On drier, richer soils, forest cover is 

characterized by sugar maple (Acer saccharum) and yellow birch (Betula alleghensis) in 

combination with other tolerant hardwoods (Rowe 1972). Forests on moist sites across the 

SNBR are dominated by red maple (Acer rubrum) and black spruce (Picea mariana). On 

mesic, poorer sites, associations of eastern hemlock (Tsuga canadensis), red spruce (Picea 

rubens), and white pine (Pinus strobus) occur (Neily et al. 2008). Timber harvesting and 

land clearing has been occurring in this region for 300-400 years (Mosseler et al. 2003), 

and at present, large public and private land holdings devoted to forest harvesting exist in 

this area, as do small private woodlots. In addition, there are large protected areas under 

federal and provincial control.  
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In 2012-2013, I conducted FEC surveys at 98 locations in the SNBR known to be occupied 

by one or more of the three species of SAR (Figure 3.1). At each location, I established site 

centre at the GPS coordinates of known sighting (or the most likely nesting habitat within 

50 m of the coordinates when detailed sighting information was unavailable). Three FEC 

plots were captured at each site: one ate the centre (centre plot), and at the ends of two 50-

m transects (end plots). Transects were oriented a minimum of 90° from one another, in 

directions of potentially usable nesting habitat for the target species (e.g. if a centre plot 

was at a clear-cut edge, transects were not directed across the middle of the clear-cut). At 

each of the three FEC plots, I recorded the location in UTM coordinates with a handheld 

GPS unit, and classified the site into one of 14 forest groups (F-groups), 88 vegetation 

types (V-types), 19 soil types (S-types), and 16 ecosite types (Ecosites) using the Nova 

Scotia Department of Natural Resources FEC System (Keys et al. 2011a, 2011b; Neily et 

al. 2011). FEC information was recorded at centre plots in both 2012-2013, but only at end 

plots at sites sampled in 2013. Where possible, sites sampled in 2012 were revisited to 

gather FEC end-plot information. In total, end plot FEC information was collected for 70 

of 98 sites. Twelve of 98 centre plots and 20 of 140 end plots received no V-type or Ecosite 

classification,  due to being in an open condition (e.g. wetlands, clearcuts)I also surveyed 

forest and understory vegetation at plots established at 10-m intervals along each transect 

for investigation of the habitat associations of these three landbird species (see CHAPTER 

2). 

 

V-type, S-type and ecosite information was assessed for each bird species as frequencies 

and proportions of each category. Frequencies were cross-tabulated to assess if species 

used FEC units in proportion to their availability. I tested for strength of association using 

Phi (a chi-square-based measure) and contingency coefficients (cc; indicates proportional 

reduction in error when values of one variable are used to predict values of another). 

Analyses were only completed for forest group and ecosite type, as expected frequencies 

per category were too small for V-type and S-type. Statistical analyses were completed in 

SPSS 21 (IBM Corporation 2012), and the significance level was set at α = 0.05. Sample 

sizes varied by test as a site occupied by more than one species could be included in the 

test more than once.
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3.1.1. Error validation of spatial datasets 

 

I used my field-collected vegetation and wetness data to verify two GIS landcover layers 

commonly used in provincial management planning for industry as well as species at risk 

conservation: the Forest Inventory Database (FID), and the ELC (Table 3.1). Based on 

orthorectified aerial photography, the FID layer classifies all provincial lands  into one or 

more of 21 forest types and 18 non-forest types in polygons (non-forest types include 

catergories such as barrens, agricultural lands, etc.; NSDNR 2006). Forested areas are 

delineated into stands based on species, crown closure, and height, with a maximum 

coverage of four tree species recorded. ELC classifies polygons based on infrared 

photography into ecoregion, ecodistrict, and ecosection, and includes a description of soil 

moisture and texture at the ecosection level (1:10 000 scale; Neily et al. 2003). 

 

FEC field data were integrated into a digital format to be compared to GIS data. I mapped 

the locations of the FEC plots as point data, and created circular buffers around each point 

at radii of 50 m and 100 m to assess scale-based differences in classification accuracy. FEC 

V-type and S-type were compared against FID cover type and ELC soil moisture and 

texture using a confusion matrix (also known as an error matrix or misclassification 

matrix). This generic method to assess the accuracy of nominal GIS datasets (Congalton & 

Mead 1983; Cihlar et al. 2003; Skirvin et al. 2004) is commonly used to compare 

categorical datasets based on remote sensing imagery with reference data collected on the 

ground to determine the level of error (Naesset 1995; Foody 2005; Johansen et al. 2007; 

Hart 2014). 

 

I constructed nine confusion matrices, one at each buffer size for three variables: soil 

texture, soil moisture, and forest cover (Table 3.2). To complete the confusion matrices, I 

re-classified FEC F-group, V-type and S-type into congruent categories, and only included 

categories that were observed in the field (Table 3.3; Table 3.4; Neily et al. 2011). For V-

types with two equally dominant species, I referred to field-collected habitat survey data 

(Chapter 2) to determine which species occurred more frequently at the plot in question, 

and reclassified the plot accordingly. 
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FEC points and buffer polygons were intersected with the FID and ELC layers, and 

corresponding FID categories for primary and secondary species recorded, as well as ELC 

soil texture and soil moisture. I used ArcGIS 10.2.2 (Esri Inc. 2014), with all map layers 

projected in NAD1983 UTM Zone 20N. I cross-tabulated reference data (field 

observations, columns) with classified data (mapped information, rows) in confusion 

matrices for each buffer size for each GIS layer-derived variable. For all three matrices, it 

was possible for more than one mapped class to be assigned to each plot, given multiple 

intersecting polygons within the buffer.  In these cases, the category that was considered a 

‘match’ for that FEC point was chosen (i.e. if the FEC point was assigned as RM – red 

maple, and the corresponding mapped categories were red maple and black spruce, the 

value was entered as RM in the confusion matrix). Both primary and secondary species 

were intersected from the FID layer. If no intersecting categories were a match, the buffer 

was assigned the category of the primary species of the polygon with highest percent cover. 

This was done to reflect accuracy relevant to a user searching for a desired category (for 

example, a user searching RM would locate all stands with a significant proportion of the 

species, rather than only where it was dominant). 

 

For all matrices, the level of congruence between classified and reference data was 

quantified by calculating accuracy. For each variable category, producer’s and user’s 

accuracy was calculated by dividing the number of correctly classified samples by the total 

number of samples in that mapped class or field category (Story & Congalton 1986; 

Naesset 1995). Accuracy was the percent of samples that were correctly classified. 

 

Cohen’s Kappa (Cohen 1960) coefficient (k) is a commonly used tool for testing 

correctness in photointerpretation (Congalton & Mead 1983), and measures the 

relationship of expected disagreement to agreement beyond chance, incorporating both 

accuracy for individual categories and overall map accuracy. Kappa is calculated using the 

formula: 

𝐾 =  
(𝑑 –  𝑞) 

(𝑁 –  𝑞)
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where d is the relative observed agreement (on the diagonal of the matrix), q is the 

proportion of values that are in agreement due to chance (the sum of the proportion of 

observed values in each class), and N is the total number of objects recorded in the matrix 

(Cohen 1960). Although K was calculated for all variables, coefficients for soil variables 

should be interpreted with caution, as categories were not necessarily exclusive (some soil 

types could have membership in more than one category). Sample size differed between 

variables due to inability to classify some plots. 

 

3.3. RESULTS 

 

In 2012 and 2013, I sampled 238 FEC plots at 98 locations in the SNBR, including 37 

occupied by Rusty Blackbirds, 45 by Olive-sided Flycatchers, and 38 by Canada Warblers. 

Complete FEC information (including V-type, S-type, and ecosite) was gathered at 86 

centre plots and 120 end plots. 

 

3.2.1. Species-specific FEC associations 

 

Eight of 14 possible forest groups were observed at sites occupied by these landbird at risk 

species. When considering all FEC plots, for all three species, forest group was most 

commonly classified as either wet deciduous (Rusty Blackbird = 28%, Olive-sided 

Flycatcher = 20%, Canada Warbler = 40%), spruce-pine (Rusty Blackbird = 25%, Olive-

sided Flycatcher = 36%, Canada Warbler = 13%), or wet coniferous (Rusty Blackbird = 

21%, Olive-sided Flycatcher = 34%, Canada Warbler = 36%). For centre plots only, 

proportions of the three categories used by Rusty Blackbird were similar, whereas Olive-

sided Flycatchers and Canada Warblers were concentrated more strongly into both the wet 

coniferous and wet deciduous forest groups (70% of Olive-sided Flycatcher centre plots in 

these two types, and 83% of Canada Warbler centre plots; Figure 3.2). When looking at all 

centre and edge plots for individual V-types, Rusty Blackbirds and Olive-sided Flycatchers 

had < 13% of samples in a single category, whereas Canada Warblers showed much higher 

frequency in two categories than any others: 24% of sites were classified as Red 
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Maple/Cinnamon Fern/Sphagnum (WD2, n = 20) and 21% as Black Spruce/Cinnamon 

Fern/Sphagnum (WC1 n = 21). Overall distribution of forest group for all plots 

significantly differed from that expected by chance (n = 241, Phi = .373, cc = 0.350, P = 

0.002). However, when looking at centre plots only, F-group proportion did not differ from 

chance (n = 101, Phi = .373, cc = 0.424, P = 0.002).  

 

Soil type was characterized as Organic at the largest proportion of all plots for all species 

(ST14, 50% of Rusty Blackbird sites, 51% of Olive-sided Flycatcher sites, and 73% of 

Canada Warbler sites; Figure 3.3). Other frequently observed soil types included Fresh – 

Medium to Coarse Textured (ST2; Rusty Blackbird = 11.4%, Olive-sided Flycatcher = 2%, 

Canada Warbler = 3%) and Moist – Medium to Coarse Textured (ST3; Rusty Blackbird = 

5%, Olive-sided Flycatcher = 11%, Canada Warbler = 6%). 

 

For all species, observed ecosites were prominently categorized as having high moisture 

and poor nutrient content (Figure 3.4). When all plots were considered, the highest 

proportion of plots for all species fell into two classifications: either Wet – Very Poor/Black 

spruce – Tamarack (AC4; Rusty Blackbird = 12%, Olive-sided Flycatcher = 21%, Canada 

Warbler = 32%) or Wet – Poor/Spruce – Fir – Red Maple (AC8; Rusty Blackbird = 17%, 

Olive-sided Flycatcher = 25%, Canada Warbler = 26%). Observed ecosite categories 

measured at centre-plots only did not differ from expected (n = 101, Phi = .481, cc = 0.396, 

P = 0.280), however, a significant difference was found when all plots were included (n = 

241, Phi = .397, cc = 0.369, P = 0.019). 

 

3.2.2. Classification error for GIS layers 

 

When field-verified using the V-type and S-type component of FEC information, accuracy 

of GIS layers was poor overall. Total accuracy of soil drainage at FEC points when 

compared to ELC classification ranged from 28-32% (Table 3.5). When corrected for 

chance agreement using pseudo-categories, Kappa was reported as in the range of slight 

agreement at all buffer sizes (Table 3.6). Similar results were observed for soil texture 

(Table 3.7). Organic soils in particular were poorly captured by the GIS layer, and 



 

  

50 

 

classified with only 17% accuracy at the FEC point, increasing to only 26% at the 100-m 

buffer. Removing organic soil categories from the analysis yielded a dramatic increase in 

accuracy and agreement, increasing Kappa agreement to fair-moderate for soil drainage, 

and to fair-substantial for soil texture (Table 3.8). Few samples were classified as ‘fine’ 

soils by FEC or ELC, resulting in a very low sample size for that category. Other than 

organic soils, drainage of FEC soil types frequently associated with the three target species 

at risk were generally well captured (ST3, 85-100% accuracy; ST2, 100%; ST15/G, 57-

100%; ST16/G, 69-75%). Texture was well-captured for ST2, ST15, and ST16 (85-100% 

accuracy for all types across all buffers), but poorly for ST3 (40-45%). 

 

Forest cover accuracy, measured by comparing dominant species classified by FID and 

FEC, was relatively high overall (Table 3.8). At the 0-m range, overall accuracy was 40% 

with a fair level of agreement (n = 209, K = 0.29). This increased to 55% at the 50-m range 

(n = 209, K = 0.45, moderate agreement) and 62% at the 100-m range (n = 209, K = 0.53, 

substantial agreement). The V-groups most commonly associated with sites occupied by 

Rusty Blackbirds, Olive-sided Flycatchers, and Canada Warblers were dominated by Black 

spruce, Red spruce, Balsam fir, Tamarack, and Red maple. Black spruce (n = 75) was 

identified by the FID in 47% of cases at 0 m, extending to 73% of cases at 100 m. Red 

spruce (n = 24) accuracy was 50% at all buffer sizes, while Red maple ranged from 37-

60% accuracy (n = 63).  

 

3.4. DISCUSSION 

 

Nova Scotia’s FEC system was a useful descriptor of habitat relationships for these three 

landbird species, as it characterized occupied sites into existing vegetation, soil, and ecosite 

classifications. The Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler showed 

fidelity to a small proportion of the total available F-groups, S-types, and ecosites, with all 

species predominantly occupying habitat described by wet, poor conditions. Sites were 

characterized by organic soils and overstory species such as black spruce and red maple. 

Particularly since all three species consistently occurred in ecosites 4, 8, and 12 with high 

frequency, it may be possible to manage for all three species in concert in forested 



 

  

51 

 

landscapes. Furthermore, they could potentially be used as focal species (Lambeck 1997) 

to conserve for broader ecological characteristics captured within these ecosite types. 

 

Although habitat requirements of the three species overlap in Nova Scotia (Chapter 2), the 

territory size of the Rusty Blackbird and Olive-sided Flycatcher is much larger than that of 

the Canada Warbler. Canada Warbler sites were concentrated into fewer F-groups, S-types, 

and ecosites than the other species, suggesting greater homogeneity of habitat, which was 

corroborated by findings for vegetation variables measured in Chapter 2. For both the 

Rusty Blackbird and Olive-sided Flycatcher, examining centre plots only reduced the 

diversity of FEC categories observed, and may be useful for identifying potential areas 

used for the species for nesting, perching, or foraging. When end plots were taken into 

consideration, this provided insight to some of the site conditions occurring within 

territories, although it should be cautioned that true independence of end plots cannot be 

assumed due to the likelihood of spatial autocorrelation. 

 

As evidenced by generally low classification accuracy overall, habitat types for these 

species are poorly captured at the stand level by Nova Scotia’s commonly-used GIS layers 

for forestry and conservation planning. However, reference data (in my case, FEC points) 

are generally considered 100% accurate (Stehman 1996). This may not have been true due 

to difficulties classifying the V-type of forest-wetland transitions, open wetlands or open 

clearcuts, and forests with co-dominant overstory species. Most of this error affected V-

type classification, but would be unlikely to affect results for ecosites, which are more 

dependent on accuracy of F-group and S-type. 

 

In my study, I relaxed the rules of correspondence and added greater search distances to 

maximize the possibility of assigning a match between classified and reference data. 

Although accuracy did increase with larger buffer sizes, the difference in accuracy between 

point level and a 100-m search distance was only large for forest cover (a 20% difference, 

compared with 6-10% for soil classification). Error was likely attributional in nature, from 

outdated imagery used for classification.  
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ELC did not capture organic soils well, and modifications to its classification method 

should be considered to better represent these features. ELC classifications would benefit 

from incorporating classification by hyperspectral imagery, which is a commonly-used 

method for estimating organic content in soils and allows for more accurate delineation of 

organic soil types (Lagacherie et al. 2006; Anne et al. 2014). 

 

There is much interest in using remote sensing products as a surrogate for ecological 

system assessment, rather than more intensive methods that require site visits (Rooney et 

al. 2012). Bergeron et al. (2012) have asserted that biodiversity conservation in general is 

only feasible with the use of such surrogates. Vegetation cover is often used as the main 

explanatory covariate for stand and regional-scale species distribution modeling (e.g. 

Bustamante & Seoane 2004; Atamian et al. 2010). I believe there is a need to verify spatial 

products in individual jurisdictions before engaging in conservation planning, to 

appropriately assess the amount of uncertainty in modelled and mapped products. In some 

jurisdictions, using spatial layers as surrogates for biodiversity information has produced 

relatively little error (Rooney et al. 2012), though this was scale dependent, with bird 

diversity best predicted at a 500-m scale, and plant diversity best predicted at 100-m scale 

(which can be above stand-scale, which is as low as 1 ha resolution; Dickinson 2014).  In 

Manitoba, verification of FID layers with FEC field data showed extremely poor agreement 

(Van de Vooren 2002). Nova Scotia’s FID layer only showed good levels of agreement at 

the largest buffer size (100 m, 3.1 ha), which is larger than the territory size of the Canada 

Warbler. Given the variety of GIS products available from region to region, verifying the 

accuracy of spatial layers with respect to habitat requirements of the wildlife species under 

consideration will allow for better-informed management. In southwestern Nova Scotia, 

FEC ecosites are a promising tool for characterizing habitat for these SAR, whereas GIS 

layers used to capture these habitat features suffer from relatively poor accuracy, especially 

at smaller buffer sizes. 

 

The potential for FEC to be used in disciplines beyond forest management is drastically 

understudied (McRae 1996). Once ecosite can be successfully and accurately mapped by 

GIS, or existing FIDs and ELC layers improve in accuracy, there is great potential to use 
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FEC associations for habitat management planning. Given that FEC is in daily use by 

forester professoinals, it also offers a simple tool that can immediately be used to 

incorporate habitat for SAR into integrated forest management systems. As the quality of 

spatial data improves with tools such as LiDAR (Wulder et al. 2014), it may be possible in 

future to accurately map ecosite or other FEC components. Until that time, GIS-based 

management planning for these SAR should be augmented with FEC-based habitat 

assessment in the field to identify potential breeding habitat and prevent its destruction by 

forest operations. 
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3.5. TABLES AND FIGURES 

Table 3.1:  Geographic Information System layers classifying forest vegetation cover and soil texture and moisture. 

 

GIS Layer 

Mne-

monic Description 

Data 

Year Scale Rights Citations 

Forest Ecosystem 

Classification Plots 

FEC Field-collected forest ecosystem 

classification information, including 

vegetation type, soil type, and ecosite 

type. Georeferenced with handheld GPS 

unit. 

2012-

2013 

N/A Lab of Dr. Cindy 

Staicer, Dalhousie 

University 

N/A 

Ecological Land 

Classification  

ELC Land systems mapped from infrared 

aerial photography. Data used includes 

soil texture and moisture content.  

1982-

1999 

1:50 

000 

Nova Scotia 

Department of Natural 

Resources - Forestry 

Division 

NSDNR 

2003 

Nova Scotia Inventory 

Database 

FID Forest cover mapped from aerial 

photography. Data used includes 

primary and secondary overstory tree 

species. 

1987-

2006 

1:50 

000 

Nova Scotia 

Department of Natural 

Resources - Forestry 

Division 

NSDNR 

2007 
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Table 3.2 :  Variables compared between field-collected reference data and classified data to determine accuracy of GIS data layers. 

  

Variable Mnemonic 

GIS Data 

Layer 

Data Origin 

Classified (Mapped) Reference (Verification) 

Soil 

moisture 

SOILMOIS Ecological Land 

Classification 

Soil moisture category 

classified according to 

ecosection delineation from 

aerial photography 

FEC S-type field classified using 

dichotomous key, moisture 

categorized by the presence of 

saturation features (oxidation and 

reduction) 

Soil 

texture 

SOILTEXT Ecological Land 

Classification 

Soil texture category classified 

according to ecosection 

delineation from aerial 

photography 

FEC S-type field-classified using 

dichotomous key, texture 

categorized according to particle 

size classes 

Tree 

species 

cover 

TREECOV Nova Scotia 

Forest Inventory 

Database 

Tree species cover classified 

according to photointerpretation 

FEC V-type classified using 

dichotomous key based on dominant 

overstory species; dominant 

overstory species indicated for that 

V-type 
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Table 3.3:  Equivalency table for soil drainage and soil texture categories classified by the Nova Scotia Forest Ecosystem 

Classification (FEC) and Nova Scotia Ecological Land Classification (ELC). 

 

Soil Drainage  Soil Texture 

Code Description 

Equivalent FEC 

Soil Types 

 

Code Description 

Equivalent FEC 

Soil Types 

P Poorly 

drained 

ST4, ST7, ST10, 

ST13, ST14 

 C Coarse textured - 

sands and loamy 

sands 

ST1, ST2, ST8-C, 

ST9-C, ST10, 

ST15, ST16, ST17, 

ST18 

I Imperfectly 

drained 

ST3, ST6, ST9, 

ST12, ST16, 

ST18 

 M Medium textured - 

sandy loams, 

loams, and silt 

loams 

ST2, ST3, ST4, 

ST5, ST6, ST7, 

ST8, ST9, ST10, 

ST11, ST12, ST15, 

ST16, ST17, ST18 

W Well drained ST1, ST2, ST5, 

ST8, ST11, 

ST15, ST17 

 F Fine textured - 

sandy clay loams, 

clay loams, and 

clay 

ST5, ST6, ST7, 

ST11, ST12, ST13 

X Variable ST19  X Organic ST14, ST19 
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Table 3.4 :  Equivalency table for forest cover classified by the Nova Scotia Forest 

Ecosystem Classification (FEC) and Nova Scotia Forest Inventory Database 

(FID) in sites occupied by three landbird species at risk. 

 

FEC V-Type Species FID Species 

Code Name 

Mean Cover of Primary 

& Secondary Code Name 

CE1 Eastern white cedar/Speckled 

alder/Cinnamon fern/Sphagnum 

Eastern white cedar (50%) 

Red maple (10%) 

EC Eastern white cedar 

IH1 Large-tooth 

aspen/Lambkill/Bracken 

Large-tooth aspen (66%) 

Red maple (14%) 

TA Aspen (large-

toothed, trembling) 

IH2 Red oak - Red maple/Witch 

hazel 

Red oak (33%) 

Red maple (33%) 

RO/RM Red maple/Red oak 

IH7 Red maple/Hay-scented fern - 

Wood sorrel 

Red maple (66%) 

Sugar maple (18%) 

RM Red maple 

MW2 Red spruce - Red maple - White 

Birch/Goldthread 

Red spruce (32%) 

Red maple (24%) 

RS/RM Red spruce/Red 

maple 

MW2a Red spruce - Red maple - White 

Birch/Goldthread, Aspen 

variant 

Red spruce (34%) 

Large-toothed aspen 

(33%) 

RS/TA Red spruce/Aspen 

MW4 Balsam fir - Red maple/Wood 

sorrel - Goldthread 

Red maple (30%) 

Balsam fir (36%) 

RM/BF Red maple/Balsam 

fir 

SH1 Hemlock/Pin cushion 

moss/Needle carpet 

Hemlock (74%) 

Red spruce (9%) 

EH Eastern hemlock 

SH2 Hemlock/White 

pine/Sarsaparilla 

Hemlock (44%) 

White pine (26%) 

EH Eastern hemlock 

SH3 Red spruce - Hemlock/Wild 

lily-of-the-valley 

Red spruce (35%) 

Hemlock (31%) 

RS/EH Red spruce/Eastern 

hemlock 

SH4a Red spruce - White 

pine/Lambkill/Bracken, Red 

spruce variant 

Red spruce (52%) 

Black spruce (23%) 

RS Red spruce 

SH5 Red spruce - Balsam 

fir/Schreber's moss 

Red spruce (63%) 

Balsam fir (13%) 

RS Red spruce 

SH6 Red spruce - Balsam fir/Stair-

step moss - Sphagnum 

Red spruce (54%) 

Balsam fir (17%) 

RS Red spruce 
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FEC V-Type Species FID Species 

Code Name 

Mean Cover of Primary 

& Secondary Code Name 

SP3a Red pine - White pine/Bracken 

- Mayflower, Black spruce 

variant 

Black spruce (31%) 

Red pine (15%) 

BS Black spruce 

SP4 White pine/Blueberry/Bracken White pine (59%) 

Balsam fir (14%) 

WP White pine 

SP4a White pine/Blueberry/Bracken, 

Black spruce variant 

Black spruce (36%) 

Red spruce (19%) 

BS Black spruce 

SP4b White pine/Blueberry/Bracken, 

Huckleberry variant 

White pine (37%) 

Balsam fir (15%) 

WP White pine 

SP5 Black spruce/Lambkill/Bracken Black spruce (51%) 

Balsam fir (16%) 

BS Black spruce 

SP6 Black spruce - Red 

maple/Bracken - Sarsaparilla 

Black spruce (34%) 

Red maple (20%) 

BS/RM Black spruce/Red 

maple 

SP7 Black spruce/False 

holly/Ladies' tresses sphagnum 

Black spruce (52%) 

Balsam fir (11%) 

BS Black spruce 

SP9 Red oak - White pine/Teaberry White pine (24%) 

Red oak (24%) 

WP/RO White pine/Red oak 

TH5 Beech/Sarsaparilla/Leaf litter Beech (58%) 

Yellow birch (14%) 

BE Beech 

WC1 Black spruce/Cinnamon 

fern/Sphagnum 

Black spruce (44%) 

Balsam fir (9%) 

BS Black spruce 

WC2 Black spruce/Lambkill - 

Labrador tea/Sphagnum 

Black/hybrid spruce (42-

65%) 

Balsam fir (6%) 

BS Black spruce 

WC2a Black spruce/Lambkill - 

Labrador tea/Sphagnum, 

Huckleberry-Inkberry variant 

Black/hybrid spruce (28-

40%) 

Red maple (13%) 

BS Black spruce 

WC5 Red spruce - Balsam 

fir/Cinnamon fern/Sphagnum 

Red spruce (49% 

Balsam fir (19%) 

RS Red spruce 

WC6 Balsam fir/Cinnamon fern - 

Three seeded sedge/Sphagnum 

Balsam fir (42% 

Black spruce (12%) 

BF Balsam fir 
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FEC V-Type Species FID Species 

Code Name 

Mean Cover of Primary 

& Secondary Code Name 

WC7 Tamarack - Black 

spruce/Lambkill/Sphagnum 

Tamarack (41%) 

Black spruce (20%) 

TL Tamarack 

WC7a Tamarack - Black 

spruce/Lambkill/Sphagnum, 

Huckleberry-Inkberry variant 

Tamarack (32%) 

Black spruce (22%) 

TL/BS Tamarack/Black 

spruce 

WD2 Red maple/Cinnamon 

fern/Sphagnum 

Red maple (49%) 

White birch (20%) 

RM Red maple 

WD3 Red maple/Sensitive fern - 

Lady fern/Sphagnum 

Red maple (50%) 

Red spruce (14%) 

RM Red maple 

WD4 Red maple/Poison 

ivy/Sphagnum 

Red maple (42%) 

Black spruce (13%) 

RM Red maple 

WD4a Red maple/Poison 

ivy/Sphagnum, Huckleberry-

inkberry variant 

Red maple (42%) 

White ash (16%) 

RM Red maple 

WD6 Red maple - Balsam fir/Wood 

aster/Sphagnum 

Red maple (37%) 

Balsam fir (27%) 

RM/BF Red maple/Balsam 

fir 

WD7 Balsam fir - White 

ash/Cinnamon fern - New York 

fern/Sphagnum 

Balsam fir (19%) 

White ash (11%) 

BF/RM Balsam fir/Red 

maple 

WD8 Red spruce - Red maple/Wood 

sorrel - Sensitive 

fern/Sphagnum 

Red spruce (38%) 

Red maple (17%) 

RS/RM Red spruce/Red 

maple 
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Table 3.5:  Classification accuracy and Kappa coefficients for soil texture and drainage from field-collected data as compared 

to data classified by the Nova Scotia Ecological Land Classification digital layer. 

 

 Soil Drainage Soil Texture 

All soils  

(n = 246) 

Mineral 

only  

(n = 100) 

All soils  

(n = 246) 

Mineral 

only 

(n = 102) 

Buffer size Acc K Acc K Acc K Acc K 

0 m 28% 0.11 62% 0.36 39% 0.20 79% 0.60 

50 m/0.8 ha 30% 0.12 66% 0.41 46% 0.27 80% 0.61 

0.85 100 m/3.1 ha 34% 0.16 75% 0.57 49% 0.32 81% 

*Interpretation of Kappa coefficients (Cohen 1960): < 0.0 = less than chance agreement, 0.01-0.20 = slight 

agreement, 0.21-0.40 = fair agreement, 0.41-0.60 = moderate agreement, 0.61-0.80 = substantial agreement, 

0.81-0.99 = almost perfect agreement. 
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Table 3.6:  Confusion matrices comparing soil drainage classified at 235 plots using Forest Ecosystem Classification (FEC) in the 

Southwest Nova Biosphere Reserve with soil drainage classified from photointerpretation in the Nova Scotia Ecological 

Land Classification (ELC) digital layer. FEC classifications were grouped into three pseudo-categories for calculating 

Kappa statistics: Poorly Drained (n = 152), Imperfectly Drained (n = 60), and Well Drained (n = 23). 

 

 

Drainage Class Soil Type    

No buffer ST4 ST7 ST10 ST13 ST14 ST3 ST6 ST12 ST16 ST2 ST1 ST5 ST8 ST15 

Row 

Total 

User 

Accuracy Kappa 

Poorly drained         3 2         5 1.00 d = 65 

Imperfectly drained 2   1 66 15 1   11 10 3  1 6 116 0.32 q = 44 

Well drained 

Not applicable 

9 1 2 1 65 3 1 2 4 10 2 1 2 8 111 0.21 n = 235 

      1 1       1           3      

Column Total 11 1 2 3 135 20 2 2 16 20 5 1 3 14 235 

Total 

Accuracy     

Producer Accuracy 0.00 0.00 0.00 0.00 0.02 0.85 0.50 0.00 0.69 1.00 0.40 1.00 0.67 0.57   0.28  K = 0.11 

50m buffer ST4 ST7 ST10 ST13 ST14 ST3 ST6 ST12 ST16 ST2 ST1 ST5 ST8 ST15 

Row 

Total 

User 

Accuracy Kappa 

Poorly drained         4 2         6 1.00 d = 70 

Imperfectly drained 4   1 83 16 1   12 10 3  1 4 135 0.29 q = 48 

Well drained 7 1 2 2 48 2 1 2 4 10 2 1 2 10 94 0.27 n = 235 

Not applicable                             0      

Column Total 11 1 2 3 135 20 2 2 16 20 5 1 3 14 235 

Total 

Accuracy     

Producer Accuracy 0.00 0.00 0.00 0.00 0.03 0.90 0.50 0.00 0.75 1.00 0.40 1.00 0.67 0.71   0.30  K = 0.12 

100m buffer ST4 ST7 ST10 ST13 ST14 ST3 ST6 ST12 ST16 ST2 ST1 ST5 ST8 ST15 

Row 

Total 

User 

Accuracy Kappa 

Poorly drained         4 2         6 1.00 d = 79 

Imperfectly drained 5  2 1 100 18 1   12 10   1  150 0.27 q = 50 

Well drained 6 1  2 31  1 2 4 10 5 1 2 14 79 0.41 n = 235 

Not applicable                             0      

Column Total 11 1 2 3 135 20 2 2 16 20 5 1 3 14 235 

Total 

Accuracy     

Producer Accuracy 0.00 0.00 0.00 0.00 0.03 1.00 0.50 0.00 0.75 1.00 1.00 1.00 0.67 1.00   0.34  K = 0.16 
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Table 3.7:  Confusion matrices comparing soil texture classified at 246 field locations using Forest Ecosystem Classification (FEC) 

in the Southwest Nova Biosphere Reserve with soil drainage classified from photointerpretation in the Nova Scotia 

Ecological Land Classification digital layer. FEC classifications were grouped into three pseudo-categories for 

calculating Kappa statistics: Fine (n = 3), Medium (n = 37), Coarse (n = 62), and Organic (n = 144). 

 

 Soil Texture Row 

Total 

  

  No buffer ST13 ST5 ST6 ST7 ST12 ST3 ST4 ST1 ST2 ST8 ST10 ST15 ST16 ST14 User Accuracy Kappa 

fine (F)                     0   d = 97 

med (M) 1 1 2 1 2 8 2 1 8 2 4 3 11 83 129 0.35 q = 60 

coarse (C)       12 5 3 11     9 5 36 81 0.35 n = 246 

organic (T) 1      4 1 1 1  2  24 34 0.71     

Not applicable (X) 1             1 2       

Column Total 3 1 2 1 2 20 11 5 20 3 4 14 16 144 246 
Total 

Accuracy    

Producer Accuracy 0.33 1.00 1.00 1.00 1.00 0.60 0.45 0.80 0.60 0.33 0.00 0.79 0.31 0.01   0.39  K = 0.20 

 50m buffer ST13 ST5 ST6 ST7 ST12 ST3 ST4 ST1 ST2 ST8 ST10 ST15 ST16 ST14 

Row 

Total User Accuracy Kappa 

fine (F)                     0   d = 113 

med (M) 2 1 2 1 2 8 4 1 7 2 4 3 11 76 124 0.37 q = 64 

coarse (C)       12 5 3 13     9 5 31 78 0.38 n = 246 

organic (T) 1           2 1   1   2   37 44 0.84     

Column Total 3 1 2 1 2 20 11 5 20 3 4 14 16 144 246 
Total 

Accuracy     

Producer Accuracy 0.00 1.00 1.00 1.00 1.00 0.40 0.36 0.80 1.00 0.67 1.00 0.86 1.00 0.26   0.39  K = 0.27 

 100m buffer ST13 ST5 ST6 ST7 ST12 ST3 ST4 ST1 ST2 ST8 ST10 ST15 ST16 ST14 

Row 

Total User Accuracy Kappa 

fine (F)                     0   d = 120 

med (M) 3 1 2 1 2 9 6 2 9 3 4 6 11 76 135 0.41 q = 61 

coarse (C)       11 5 3 11     8 5 31 74 0.36 n = 246 

organic (T)                           37 37 1.00     

Column Total 3 1 2 1 2 20 11 5 20 3 4 14 16 144 246 
Total 

Accuracy     

Producer Accuracy 0.00 1.00 1.00 1.00 1.00 0.45 0.55 1.00 1.00 1.00 1.00 1.00 1.00 0.26   0.42  K = 0.32 
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Table 3.8:  Confusion matrices comparing species of dominant forest cover classified at 209 field locations in the Southwest Nova 

Biosphere Reserve with species of dominant forest cover classified from photointerpretation in the Nova Scotia Forest 

Inventory Database digital layer. See Table 3.4 for description of species codes. 

 

No Buffer BE BF BS EC EH RM RO RS TA TL WP Other 

Row 

Total 

User 

Accuracy Kappa 

BE               0 1.00 d = 81 

BF  1        1    2 0.50 q = 30 

BS   35   10  3   1   49 0.71 n = 209 

EC    3          3 1.00     

EH     2 2        4 0.50     

RM   4   23  2      29 0.79     

RO      1      1   2 0.00     

RS   4     10   1   15 0.67     

TA         1     1 1.00     

TL          3    3 1.00     

WP   2  4 5  1   3   15 0.20     

Other 1 1 30  3 22 1 8 1 9 10   86 1.00     

Column 

Total 1 2 75 3 9 63 1 24 2 13 16 0 209 
Total 

Accuracy     

Producer 

Accuracy 0.00 0.50 0.47 1.00 0.22 0.37 0.00 0.42 0.50 0.23 0.19 1.00   0.39 K = 0.29 
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50m 

Buffer BE BF BS EC EH RM RO RS TA TL WP Other 

Row 

Total 

User 

Accuracy Kappa 

BE               0 N/A d = 114 

BF  1        1    2 0.50 q = 37 

BS   51   5  3   1   60 0.85 n = 209 

EC    3          3 1.00     

EH   1  4 1        6 0.67     

RM   4   32  3      39 0.82     

RO      2      1   3 0.00     

RS   2   1  12      15 0.80     

TA         1     1 1.00     

TL          5    5 1.00     

WP   2  3 5     5   15 0.33     

Other 1 1 15  2 17 1 6 1 7 9   60 N/A     

Column 

Total 1 2 75 3 9 63 1 24 2 13 16 0 209 
Total 

Accuracy     

Producer 

Accuracy 0.00 0.50 0.68 1.00 0.44 0.51 0.00 0.50 0.50 0.38 0.31 N/A   0.55 K = 0.45 

100m 

Buffer BE BF BS EC EH RM RO RS TA TL WP Other 

Row 

Total 

User 

Accuracy Kappa 

BE               0 N/A d = 129 

BF  2        1    3 0.67 q = 39 

BS   55   4  3  1 1   64 0.86 n = 209 

EC    3          3 1.00     

EH   4  5         9 0.56     

RM   1   38  2      41 0.93     

RO      2      1   3 0.00     

RS   2   1  12      15 0.80     

TA         1     1 1.00     

TL          6    6 1.00     

WP   1   3     7   11 0.64     

Other 1  12  4 15 1 7 1 5 7   53 N/A     

Column 

Total 1 2 75 3 9 63 1 24 2 13 16 0 209 
Total 

Accuracy     

Producer 

Accuracy 0.00 1.00 0.73 1.00 0.56 0.60 0.00 0.50 0.50 0.46 0.44 N/A   0.62 K = 0.53 

 

 



 

  

 

  

6
5

 

 

 

Figure 3.1:  Study area showing 265 FEC plots sampled at 99 locations in the Southwest Nova Biosphere Reserve (gold circles, left 

inset) and buffer sizes around 9 FEC sample plod contrasted with provincial Forest Inventory Database forest cover data 

(right inset). 
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Figure 3.2:  Percentage of forest groups classified at plots occupied by the Rusty 

Blackbird (RUBL; all plots n = 81, centre plots n = 32), Olive-sided 

Flycatcher (OSFL; all plots n = 85, centre plots n = 37), and/or Canada 

Warbler (CAWA; all plots n = 85, centre plots n = 36) in the Southwest 

Nova Biosphere Reserve. Classified forest groups include wet deciduous 

(WD), spruce-pine (SP), wet coniferous (WC), spruce-hemlock (SH), 

mixedwood (MW), intolerant hardwood (IH), tolerant hardwood (TH), and 

cedar (CE). 
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Figure 3.3 :  Percentage of soil types classified at plots occupied by the Rusty Blackbird 

(RUBL; all plots n = 94, centre plots n = 38), Olive-sided Flycatcher (OSFL; 

all plots n = 104, centre plots n = 45), and/or Canada Warbler (CAWA; all 

plots n = 90, centre plots n = 38) in the Southwest Nova Biosphere Reserve. 

Classified soil types included organic (ST14), moist-medium to coarse 

textured (ST3), fresh-medium to coarse textured (ST2 and granitic phase, 

ST2-G), dry shallow-medium to coarse textured, granitic phase (ST15-G), 

moist shallow-medium to coarse textured, granitic phase (ST16-G), wet-

medium to coarse textured (ST4), and other types. 
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Figure 3.4:  Ecosites classified at plots occupied by Rusty Blackbird (RUBL; all plots n = 75, centre plots n = 30), Olive-sided 

Flycatcher (OSFL; all plots n = 81, centre plots n = 35), and/or Canada Warbler (CAWA; all plots n = 85, centre 

plots n = 36) in the Southwest Nova Biosphere Reserve. Ecosites are organized by moisture and richness (nutrient 

availability) along edatopic grids (Keys et al. 2011b).  
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CHAPTER 4 CHOOSING A SPECIES 

DISTRIBUTION MODEL FOR CONSERVATION 

 

4.1. INTRODUCTION  

 

Correlative models are widely used to describe patterns and make quantitative predictions 

about species distributions and the environment. Species distribution models (SDMs) 

include a suite of empirical and mechanistic models, encompassing numerous techniques 

that make a spatial prediction about species distribution, abundance, or occurrence. The 

function of all SDMs is twofold: to provide ecological explanations for observed spatial 

patterns, and to predict conditions or distributions in unsampled locations or times. 

 

SDMs have become commonplace in many disciplines, including conservation biology, 

ecology, biogeography, and wildlife management (for key summaries of SDM techniques 

and applications, see Guisan & Zimmermann 2000; Segurado & Araújo 2004; Guisan & 

Thuiller 2005; Pearson 2007; Franklin 2009, 2013). SDMs have been used to tackle 

conservation problems and to support decision-making about wildlife and resource 

management, such as identifying areas of high-value habitat, estimating population size, 

and projecting shifts in species distributions in relation to climate change, among many 

others (e.g. Larson et al. 2003; Macdonald & Rushton 2003; Cumming et al. 2013). 

 

SDMs can be divided into two broad categories of models: empirical (or correlative) and 

mechanistic (Kearney & Porter 2009). The former uses known distributions to predict 

habitat suitability or likelihood of species occurrence, abundance, or occupancy, whereas 

the latter uses information about species physiology and demography to predict functional 

connectivity, breeding success, and other responses (Murphy & Evans 2011). Models in 

each category use different types of information, and predict distributions according to 

different metrics. For the most part, authors that explicitly use the term ‘SDM’ are referring 

to empirical models only when they do so, as mechanistic models are much less commonly 
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used. However, both kinds of models are important: each is grounded in different aspects 

of ecological theory, and is only suitable for making certain kinds of predictions. 

 

Depending on the expertise of the modeler and the size of the dataset, successfully 

assembling one or more SDMs to guide conservation decisions can be a complicated 

process. SDM construction can require a great deal of time and intensive use of 

computational resources. Choosing an SDM should be done strategically, with thought 

given to how the model can inform a chosen conservation objective. This entails taking 

into account available data, the experience of the user, and possible prediction metrics, 

among other concerns. 

 

A number of excellent reviews are available to help users compare SDM(s) based on data 

type and model performance (see Guisan & Zimmermann 2000; Pearson 2007; Elith & 

Leathwick 2009a, 2009b; Franklin 2009; Guisan et al. 2013). However, these reviews make 

few clear connections with conservation applications, and either ignore mechanistic SDMs 

or give them only passing mention. Guisan & Zimmermann (2000) recognized that it is 

essential to select a model based on the goal of the study, yet no guides exist to help a user 

select a SDM specifically for conservation objectives.  

 

Managers typically use SDMs to meet objectives of species conservation or recovery, such 

as designing protected areas, identifying critical habitat, or anticipating the effects of 

climate change. Rather than building a model and then attempting to apply the outcome to 

the objective, consideration of the final intent at the outset is needed. By selecting a model 

with the conservation objective in mind, it will be possible the refine the model to meet 

scientific and practical needs. 

 

An easily-interpretable framework is needed to aid managers and researchers in selecting 

a model that is suitable for their conservation objectives. In this chapter, I develop such a 

framework using previously published documentation of best practices from experts in the 

field, and survey existing SDMs that have been constructed for specific conservation 

objectives.  
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Objectives of this chapter include (1) contextualizing SDM in ecological theory to 

determine which prediction metrics are ecologically appropriate for empirical and 

mechanistic SDMs, (2) evaluating recently published academic and gray literature SDMs 

for landbirds to determine if prediction metrics were reported with the correct measure and 

amount of uncertainty for model and data type, and (3) use lessons learned to develop a 

framework for selecting an appropriate SDM based on data type, conservation objective, 

data quality, and model performance. 

 

4.2. CONTEXTUALIZING SPECIES DISTRIBUTION MODELING IN ECOLOGICAL 

THEORY 

 

Increasing availability of GIS data products and computer packages for model algorithms, 

as well as open-source modeling software, has enabled proliferation of many different 

types of SDMs in recent years. Over time, various names in modeling lexicon have become 

synonymous with SDM, such as ‘species niche models’, ‘bioclimatic envelope models’ 

and ‘spatially-explicit habitat models’.  For the purpose of this chapter, SDM will be the 

preferred term, in accordance with Franklin (2009). Furthermore, I will consider SDMs to 

include only spatially-explicit models, which are models that make a distributional 

prediction in geographic space (as opposed to, for example, niche space). 

 

The main two categories of SDM considered in this chapter are: (1) Empirical models, 

which generally use known species locations and environmental covariates to predict 

species occurrence, abundance, or occupancy, and (2) mechanistic models which use 

biophysical constraints and demographic information for the organism along with 

environmental factors to predict occupancy, fitness, breeding success, or other life history 

traits. Models can either be static (prediction in one time frame) or dynamic (predictions 

changing through time). Empirical SDMs will be given a more detailed treatment because 

they are more commonly used, tend to be designed to provide a spatial output, are suited 

to a variety of spatial scales, and have relatively easy application to conservation planning. 

Mechanistic SDMs require intensive data acquisition that is not possible in many 

conservation and management scenarios, typically confined to local or sub-regional areas, 
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and can be much more difficult to project as spatial maps. An overview and 

recommendations for use will be given for mechanistic SDMs as well as empirical ones, 

but specific algorithms for mechanistic models will not be examined in depth. At present, 

there are no known comprehensive reviews of mechanistic models, and each model type 

must be assessed for use on a case-by-case basis. 

 

4.2.1. Ecological theory and model limitations 

 

Ecological models involve taking ecological concepts from niche theory, or how an 

organism responds to resources and competitors, and embedding them into an algorithmic 

framework (Brown et al. 1996; Franklin 2009). Organisms are limited regarding what 

environments they can occupy, and the factors driving these limits are many: e.g. 

physiological limitations (such as thermal tolerance), biotic interactions, or competitive 

exclusion. SDMs can be used for interpolation (predicting values in unsampled sites within 

a region that contains samples) or extrapolation (predicting values in unsampled 

geographic domains, as well as past or future climates; Elith & Leathwick 2009c).  

 

All SDMs have limitations, based on model assumptions and covariates. They also are 

generally limited by issues related to sample distribution and variable uncertainty. In many 

cases, the SDMs that are employed are not based on sound ecological theory, limiting the 

realism of their predictions (Elith & Leathwick 2009c). Different SDMs have different 

explanatory abilities, however, all have some level of model uncertainty that must be 

accepted. The consequence of theoretical limitations differs for each individual SDM. For 

certain models in certain situations, the amount of uncertainty or the scientific limitations 

may outweigh the usefulness of model outputs, or the model’s ecological assumptions may 

make it unsuitable for the desired objective (Drew et al. 2011; Guillera-Arroita et al. 2015). 

Thus, it is important to navigate model selection being fully aware of the strengths and 

limitations of model algorithms. 
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4.2.1.1. Empirical algorithms 

 

Empirical SDMs relate georeferenced data about species locations with information on the 

environmental characteristics of those locations (Elith & Leathwick 2009b). In their 

simplest forms, empirical SDMs can be constructed even without georeferenced location 

data: expert opinion is used to generate hypotheses about occurrence based on 

environmental covariates known or thought to be relevant to the organism. The least 

sophisticated empirical SDMs that use geo-referenced organism location data are purely 

geographic in nature (e.g. kernel density estimators, range maps; Bateman et al. 2013). 

However,  most  evidence suggests that the inclusion of both spatially geo-referenced 

species data and environmental information at these locations is essential for good model 

performance (Elith & Leathwick 2009c). 

 

Modern empirical SDMs, which relate georeferenced species and environment data, grew 

from generalized linear modeling (GLM) techniques, becoming more common in the 

1990s. GLM structural features are still part of many current methods (Phillips et al. 2006), 

whereby a prediction metric (the response variable, or the aspect of species distribution 

being estimated) is related to a series of environmental covariates. The development of GIS 

has allowed for increasingly complex digital models of environmental data, and methods 

to relate these to species location data have subsequently been developed. SDMs are now 

commonly used for prediction of distributions, spurred in part by demands for mapped 

products for conservation and land management (Elith & Leathwick 2009c).  

 

At present, there are dozens of empirical SDM algorithms in use. Elith & Leathwick 

(2009a) and Franklin (2009) summarize SDMs into model types and algorithm families 

and in this chapter, I adapt these family groups to classify different types of SDMs. I have 

not endeavored to include an exhaustive review of all empirical SDMs in past or present 

use, but many common methods within each algorithm family are included. Table 4.1 

describes algorithm families and lists common algorithm types. For lists and descriptions 

of many of these individual model algorithms, see Elith & Leathwick (2009a) and Franklin 

(2009). 
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I separate models by general methodological approach, into five families: (1) expert-based, 

where expert-defined rules are used to determine relationships between covariates and 

species occurrences, (2) envelope and similarity, which quantify ranges, means, and other 

descriptors of covariates in bounds around species locations, (3) statistical, which use 

statistical methods in ecology to derive covariate distributions, (4) machine learning, which 

apply iterative rule-based processes to achieve model parsimony, and (5) occupancy 

algorithms, which use information about detectability from repeated measures to predict 

probability of habitat occupancy. 

 

The overarching limitation of most empirical SDMs is that they are imperfect in their 

ability to explain the occupied conditions (i.e. the realized niche) versus the potential 

distribution (i.e. the fundamental niche) of the species (Guisan & Zimmermann 2000; 

Pearson 2007). Empirical SDMs can only explain the fundamental niche from covariates 

(predictor variables or dimensions) that are entered by the user, which are typically based 

on known distributions. Factors that determine the realized niche, such as predation and 

competition, are rarely explicitly modeled by empirical SDMs. 

 

The prediction is limited by what can possibly be modeled from available covariates. There 

will be unknown contributing factors: ‘known unknowns’ (such as environmental variables 

that are known to be influential but cannot be modeled from available data, e.g. competitive 

interaction by another species for whom occurrence records are not available, or 

information about understory plant coverage that is not captured in GIS layers), or 

‘unknown unknowns’ (important covariates that have not been, or cannot be, measured, 

e.g. an anthropogenic disturbance that is not anticipated). Due to these unknowns, it is also 

important to be skeptical about which components of the fundamental niche are represented 

by SDM predictions, as noted by Elith & Leathwick (2009b). In an empirical SDM, only a 

limited number of covariates are included, and they are related to occurrence samples that 

do not completely represent a given population. Depending on the amount and importance 

of these unknowns, the ability to realistically predict the fundamental niche can be limited.  
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When applying empirical SDMs to conservation objectives, a user’s foremost 

consideration should be whether the model’s predictions can accomplish their conservation 

objective. Model predictions, or the parameter they are able to estimate, are dependent on 

data type (Table 4.1). Empirical SDMs use five types of species data (adapted from 

Guillera-Arroita et al. 2015): species biology (SB), presence-only (PO), presence-absence 

(PA), abundance-absence (AA), and occupancy-detection (DET). SB data include 

information about a species’ biology and ecology that is used a priori by experts to 

determine suitable habitat features. PO data use spatially georeferenced locations where a 

species has been documented to occur. Depending on the modeling method used, PO data 

can be converted to presence-background (PB) data, by pseudo-absence data from 

unsampled sites that are presumed to be ‘available’. PO and PB models have increased in 

popularity, as they can use telemetry data, museum records, and citizen science. PA data is 

a measure of occurrence, with both species presence and absence documented for each site. 

AA data are similar to PA data, but include numerical counts at presence sites, and AA 

data can be used to derive population density if detectability is taken into account. Finally, 

DET data estimate the detectability of an organism or population and can be measured with 

repeat visits, mark-recapture techniques, or estimated using statistical offsets (MacKenzie 

et al. 2006; Sólymos et al. 2013). 

 

Where a species breeds successfully, where it occupies, where it can occur, or where it is 

likely to be observed are all very different predictions. Empirical SDMs can only 

accomplish some of these, and which are sacrificed depends on the type of data input. 

Generally, SB data in empirical models can only rank a relative probability of species 

occurrence in a given habitat (though they can serve other functions in mechanistic 

algorithms). SB-based model outputs typically give an index of habitat suitability, whereby 

some habitats can be ranked as relatively higher or lower than others. Barry et al. (2006) 

cautioned that expert-led models should not be used as representations of species or 

community presence, but rather, only for their ability to measure changes in habitats over 

time. Models using PO data can only rank likelihood of occurrence. Algorithms that 

convert PO data to a PB condition can predict relative likelihood of occurrence under 

certain conditions, whereas PA can predict relative likelihood of occurrence. Models using 
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PA data are advantageous because they yield more accurate predictions (Brotons et al. 

2004), contain valuable information about survey locations that can be used to analyze bias, 

and can give a measure of prevalence for calibration when calculating probability of 

occurrence (Franklin 2013). AA data can predict expected abundance. If AA data are 

corrected for detectability (see Bayne et al. 2011; Sólymos et al. 2013), they can be used 

to calculate expected population density (e.g. (Stralberg et al. 2014). When predictions of 

abundance or occurrence are constrained using detection probability, DET data can be used 

to predict likelihood of occupancy (MacKenzie et al. 2006).  

 

Though often overlooked by users, predictions are linked to survey methodology. The 

methods that were used in the collection of the data must be taken into account when 

applying the outcome of the model to the real world.  Take, for example, a model generated 

with PA data from point counts surveying for 10mins with a 100-m detection radius. The 

resulting map will be the relative likelihood of observing during the species during a 10-

min point count survey within a 100-m radius—not the absolute likelihood of observing it 

in that location. 

 

Despite these drawbacks, empirical SDMs have many advantages: they offer powerful 

tools to assess the likelihood of species occurrence, and potentially abundance. From this, 

one can infer habitat suitability on a landscape. They can implicitly incorporate any process 

associated with covariates, be tailored to fit commonly available data, have high precision 

for local analysis, are less likely to overestimate range, and provide a relatively simple 

output. They are good for large spatial scales. They are particularly useful for poorly-

studied taxa as inferences can be made from relatively few observations (or purely from 

expert knowledge), and tend to be highly generalizable (Kearney & Porter 2009). Empirical 

SDMs can predict where a species is likely to be observed, or, where it can occur, and if 

detectability information is included, locations it is likely to occupy. 

 

However, empirical SDMs have some unavoidable theoretical limitations. They assume 

equilibrium or pseudo-equilibrium between observed species patterns and the environment, 

for example, assuming that abundance at a location can be reliably estimated from a given 
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sample. However, for most species, assumptions of equilibrium are rarely valid as 

environmental conditions, biotic interactions, and other factors are in constant flux (Alley 

1982; Vallecillo et al. 2009; Crawford & Hoagland 2010). Most SDMs, with known 

locations corrected for detectability, can only predict species occurrence and not which 

habitats are occupied. It is important to note that although empirical SDMs can infer 

relative suitability, they cannot identify which patches of habitat are truly suitable from a 

fitness perspective without including physiological or demographic parameters relating to 

these different environments. Abundance data may be able to infer reproductive success 

(Carl & Jones 2004), but AA data is much less commonly available than PO or PA. 

Absence or pseudo-absence data do not necessarily indicate an unsuitable environment, 

but simply one where the species is not known to occur. The capacity of empirical SDMs 

to make accurate predictions in climate change scenarios has been criticized (Araújo et al. 

2005), particularly given their lack of inclusion of mechanistic or evolutionary processes 

(Dormann 2007). For these reasons, empirical SDMs are by nature less effective in 

unsaturated habitats, with organisms that are very difficult to detect, in a changing 

environment (Guisan & Zimmermann 2000), or when sampling is not accounted for 

(Kearney & Porter 2009).  

 

4.2.1.2. Mechanistic algorithms 

 

Physiological limitations constrain the environments which organisms can inhabit, and 

their abundance. In a mechanistic model, the organism is entered into the model not as 

merely an observation, but a set of behavioral, morphological, and physiological traits 

(Kearney & Porter 2009). This allows for the incorporation of biological responses that 

limit the range of a species, which are important for assessing what habitat is possible to 

occupy. Mechanistic SDMs, depending on the data type, can predict where a species 

occupies, or where it can breed successfully (or has success for some other life history 

trait). Whereas empirical SDMs are best suited to predict distribution, mechanistic SDMs 

are suited to predicting populations’ responses to changing conditions. 
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Mechanistic SDMs (also known as ‘physiologically-based’, ‘process-based’, or ‘dynamic 

simulation’ models) begin from a process-based view of the fundamental niche of an 

organism, and map this information on to the landscape to understand range constraints 

(Kearney & Porter 2009). They do not begin by analyzing the known distribution of a 

species (as empirical SDMs do), but rather, with the biology and ecology of the organism 

itself (by characterizing physiological tolerance or demography, expressed as rates of 

mortality, fecundity, carrying capacity, etc.). The output of mechanistic models varies 

depending on the type of model. Typically, they can give spatial predictions of population 

growth or fecudnity in different habitat conditions. The exceptions are metapopulation 

models, which use information about population demographics as well as occupancy to 

predict population density or probability of habitat occupancy (the likelihood that a given 

patch of habitat will be occupied by a given species; Araújo 2009).  

 

I group mechanistic models into three general types (Table 4.2): (1) spatial population 

viability analysis (SPVA), which uses population ecology and demography to predict 

parameters like fecundity, colonization, and extinction (Akçakaya 2000), (2) spatially-

explicit mechanistic niche models, which model traits governing the fundamental niche, 

such as thermal tolerance (for fundamental literature, see Root 1988, for an example using 

trees, see Morin et al. 2007), and (3) occupancy models that incorporate mechanistic 

processes. The list of models provided in Table 4.2 is certainly non-exhaustive. Within 

these broad types, I have sorted models into categories based on the type of information 

they use to generate a prediction. 

 

Data inputs for mechanistic SDMs models vary, but typically involve some kind of 

population viability (PV) data such as genetic markers, physiological tolerance, fecundity, 

or survival. Physiological limits can be derived from laboratory testing. Mark-recapture 

studies can be used to gather detectability data from repeat measures (DET), which is useful 

for occupancy models and SPVA analysis. Model estimation parameters depend on the 

type of data input (Table 4.2). Estimation parameters include probability of occurrence, 

probability of occupancy, and viability (I use ‘viability’ to be inclusive of functional 

parameters like fecundity, colonization, breeding success, survival, carrying capacity, 
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population growth rates, dispersal, and others). As with any model, the data used as input 

determine what the model is capable of estimating. 

 

Mechanistic models are advantageous over empirical models in that they function in non-

equilibrium conditions or novel circumstances, and have high transferability (Kearney & 

Porter 2009). Increasingly widespread availability of genetic information has allowed for 

powerful new tools to model landscape genetics (Murphy & Evans 2011). Mechanistic 

models are explicitly biologically grounded, and thus their assumptions are independent of 

the specific occurrence or abundance data added to the model to aid in spatial prediction.  

 

Mechanistic modeling requires detailed knowledge of the species being modeled (Guisan 

& Zimmermann 2000), such as genetic information, thermal tolerance, dispersal, 

fecundity, and many other types of demographic or biological knowledge (Bateman et al. 

2013). SPVA often lacks in spatial detail (Carroll et al. 2003), and takes more time, effort, 

resources, and data to construct and validate (Kearney & Porter 2009). Mechanistic models 

using collected biological data from specific populations are typically confined to small 

geographical areas, due to the fine resolution of these data. On the other hand, mechanistic 

models using thermal tolerance, dispersal distance, or other traits modeled at a large scale 

will be restricted to extremely coarse-filter projections (e.g Saracco et al. 2008). In general, 

though mechanistic models provide outputs that are ecologically interpretable, they require 

considerable effort and combination with GIS techniques to generate mapped outputs. In 

contrast, many empirical SDMs lend themselves relatively simply to projection in a GIS 

environment, whereas representing mechanistic SDMs outputs spatially can be challenging 

for some algorithms (Kearney & Porter 2009).  

 

There have been attempts at convergence in recent years, where empirical SDMs include 

covariates or constraints based on mechanistic principles. Though rarely employed, these 

techniques vary: for example, integrating estimates of dispersal from previous field studies 

into empirical projections (Zozaya et al. 2011), constraining prediction by minimum viable 

population requirements (Larson & Sengupta 2004), and including thermal tolerance limits 

into distribution projections for climate change scenarios (Monahan 2009). 
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4.3. CONSERVATION OBJECTIVES AND APPROPRIATE USE 

 

The mapped outputs of SDMs, whether empirical or mechanistic, aid in choosing locations 

to apply conservation measures or evaluating threats, and can be integrated with other kinds 

of management planning. Some conservation objectives are aspatial (e.g. reducing a 

generalized threat), but most can be represented spatially (e.g. by localizing areas of highest 

threat). It is up to the practitioner to choose an objective—this cannot be determined by an 

SDM (for assistance with objective-setting, see Tear et al. 2005). All conservation 

objectives can be informed by metrics specifically selected to predict the most ecologically 

relevant information for decision-making. 

 

For every conservation objective, there will be predicted metrics of species response that 

are ideal (metrics well-grounded in ecological theory), or metrics that could be used as 

plausible surrogates for ecological responses if there is a paucity of information. Detailed 

consideration of appropriate prediction metrics for a given objective should precede 

modeling. For example, if the goal is to identify critical habitat, it is essential to know not 

only if habitat is suitable, but whether it can support a viable population. The ultimate goal 

of species recovery is typically to maintain or increase population levels towards some pre-

decline benchmark (Sanderson 2006; Westwood et al. 2014). To achieve this, it is 

necessary to have detailed life history and population status information, which is not 

incorporated in most empirical SDMs. Typically, conservation planning methods forgo 

explicit measures of population viability for surrogates such as amount of habitat, 

population size, or other metrics. This does not always have a sound basis in ecological 

theory (Nicholson & Ovaskainen 2009), but may be the only option given available data. 

 

SDMs, if applied without adequate consideration of the use of the metric they are 

predicting, result in poor inference and sub-optimal management outcomes (Guillera-

Arroita et al. 2015). Where a species reproduces successfully, where it occupies, where it 

can occur, or where it is likely to be observed are all very different predictions. It is 

important to distinguish between these metrics when trying to meet conservation 
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objectives. It is critical that, prior to model selection, users be aware of what metrics a 

given model is capable of estimating (Guillera-Arroita et al. 2015).  

 

4.3.1. Surveying appropriateness of existing SDMs for conservation 

applications 

4.3.1.1. Methods 

 

Given the increasingly common application of SDMs to conservation objectives, I assessed 

how users have applied their models, and whether they reported the response metric 

correctly for the type of data and model used. To do so, I surveyed peer-reviewed 

publications as well as gray literature from NGOs and government departments worldwide. 

I limited the evaluative portion of the review to SDMs for landbird species, to reduce the 

scope to broadly similar ecological contexts. 

 

I used the Dalhousie University NovaNet database to search the entire catalogue from 

2004-2015 using the terms “bird + species distribution model”, “bird + mechanistic niche 

model”, “bird + occupancy model” and “bird + predictive habitat model.” I also used a 

Google search with the terms “species distribution + bird + gov” to locate gray literature, 

which is not included in NovaNet’s catalogue (particularly government department 

reports). I also sent out an email request for gray literature amongst listservs associated 

with bird research in North America and worldwide.  When I found relevant titles, I 

examined their references for additional titles to investigate. Only papers and reports in 

English and French were considered. To be included in my analysis, papers, reports, and 

documents needed to fulfill all of the following criteria: 

 

a) Develop a spatially-explicit species distribution model, whereby the model 

output was mapped onto the land surface; 

b) Predict species occurrence, abundance, population density, occupancy, or a 

parameter of viability in a continuous or categorical manner; and 

c) Include at least one landbird species in the model. 
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Articles chosen for further analysis presented original research that developed and applied 

at least one spatially-explicit predictive distribution model to one or more landbird species 

anywhere in the world. I evaluated 128 unique SDM algorithms from 20 reports and 56 

academic papers, as many authors used more than one model algorithm. Effort was put into 

locating as much gray literature as possible (21 models in 20 reports, comprising 16% of 

models and 28% of literature surveyed). 

 

Each paper used one or more models, with a single model being defined as the output 

produced by a given modeling algorithm. When final map outputs were constructed from 

‘stacked’ or ‘ensemble’ methods (aggregating outputs of algorithms), each algorithm was 

counted uniquely as a model. For each model, I recorded the authors, year, paper type, 

algorithm family, specific algorithm used, data type, prediction metric (reported), the 

correct prediction metric for that paper’s data type, and conservation aim. 

 

I compared prediction metrics reported by authors to the prediction metric appropriate for 

that data type (Table 4.3). The reported prediction metrics were assessed as ‘correctly 

reported’, ‘partially correctly reported’, or ‘incorrectly reported’. A model was reported 

correctly when the metric was correct for the data type with the appropriate amount of 

uncertainty expressed. A ‘partially correctly reported’ prediction metric expressed the 

correct type of prediction, but did not include uncertainty correctly (e.g. ‘species 

occurrence’ reported for PO data, which should be reported as ‘rank likelihood of species 

occurrence’). Finally, an incorrectly reported model gave the wrong prediction for a given 

data type (e.g. ‘occupancy’ reported for AA data, which should yield ‘relative abundance’). 

 

I also assigned a binary value for each model to each of four conservation aims: 1) spatial 

conservation prioritization; 2) predicting species assemblages or richness; 3) mapping 

current range; 4) predicting responses to climate change, and 5) predicting population 

viability. I also recorded when an express aim of the paper was to test or improve SDM 

modeling theory. For each model, conservation aim was derived from the paper’s 

objectives or discussion section. Models could be assigned a value for more than one 

conservation aim. 



 

   

83 

 

4.3.1.2. Results and discussion 

 

Of the 128 models evaluated, 111 were empirical, 4 mechanistic, and 13 used mixed 

empirical-mechanistic approaches. The most common algorithm families were regression-

based (45 models), followed by decision trees (22 models) and maximum entropy (15 

models; Table 4.4). This is consistent with Wiersma (2011) who examined the proportion 

of model types used from 1998-2007 and found that, overwhelmingly, regression-based 

methods were most common. As modelling has evolved, newer methods such as machine 

learning and maximum entropy have come to be favoured over regression-based in some 

cases. Visualization of publication by year (Figure 4.1) indicates that some algorithm 

families, such as envelope and niche models and expert-led models, were more popular in 

the earlier portion of the last decade, with maximum entropy and decision trees gaining in 

recent years. 

 

The prediction metric for models was reported correctly (with an appropriate expression of 

uncertainty) 10 cases (7.8%), partially correct (without an appropriate expression of 

uncertainty) in 88 cases (68.8%), and incorrectly (reported prediction metric incompatible 

with data type used) in 30 cases (23.4%). Entirely correct reporting only occurred for 

models using regression-based, neural networks, maximum entropy, or decision-tree 

algorithms. Regression-based algorithms, decision trees, spread models, and expert-led 

models were most likely to report an incorrect prediction metric for the type of data used 

(Figure 4.2). Accuracy of reporting did not vary greatly by the aim of the model 

(Figure 4.3). Of the 107 models algorithms analyzed in academic publications, prediction 

metrics were reported correctly in 23.4% of models, partially correctly in 70.1%, and 

incorrectly in 6.5%. The gray literature model algorithms (21) reported prediction metrics 

correctly in 23.8% of cases, partially correct in 62% of cases, and incorrectly in 14.3%.  

Models from the gray literature were confined to six algorithm families: decision tree (3), 

expert-led (6), genetic (1), maximum entropy (5), neural networks (1), and regression-

based (5). Only one paper from gray literature used more than one model algorithm in their 

report, and none used ensemble methods, mechanistic models, or mixed methods 

(mechanistic components in empirical algorithms).  
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Though these 128 model algorithms represent a non-systematic sample, the high proportion 

of model results that reported prediction metrics without an appropriate description of 

uncertainty is concerning. Much of the incorrect reporting seemed to arise from 

misinterpretation by the authors regarding the limitations of their input species data. These 

mistakes are extremely common:  in a literature survey of over 100 academic papers that 

used Maxent, Yackulic et al. (2013) found that over half incorrectly interpreted the output 

as actual probability of occurrence, rather than relative probability of occurrence (being 

relative to bias, detectability, and other sampling constraints). Such misreporting could lead 

both investigators and managers to be over-confident in the capacity of their models to 

make accurate predictions, or not adequately consider their constraints. This is particularly 

true for models non-mechanistic projecting into the future or unsampled locations, which 

may overestimate species presence (Merow et al. 2011). 

 

This may be particularly relevant outside of academic spheres, as it may be difficult for 

managers to stay abreast of up-to-date modeling theory, especially given how quickly the 

discipline changes. Managers may also lack the training to select models appropriately, or 

be unaware of alternative methods. Although much caution has been raised regarding the 

use of HSI models (Brooks 1997), the gray literature here and personal communication 

with government scientists and environmental consultants suggests that this older 

technique is still in widespread use, and is the preferred technique for many. The lack of 

mechanistic, ensemble, or mixed methods modeling in the gray literature surveyed here 

may be symptomatic of a divide between model developers and conservation managers. 

 

4.4. SELECTING AN SDM STRATEGY BASED ON CONSERVATION OBJECTIVE 

4.4.1. A new guide for model selection 

 

An obvious need exists for managers to use SDMs, particularly robust ones, in conservation 

planning. Prospective users must be able to simply and quickly evaluate what modeling 

methods are appropriate for their data and conservation objectives. Based on prior review 

of ecological limitations and use of existing SDMs in the literature, I propose a framework 
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to assist in the selection of a modeling strategy based on conservation objective, which is 

intended to produce mapped outputs of species distribution to inform management 

decisions. This framework includes four steps: 

1. Consider the data available in your study area. Follow Flow Chart 1 (Figure 4.4) to 

determine which prediction metric(s) can be modeled from your data. 

2. Select a conservation objective from those listed in Table 4.5. Follow the indicated 

flow chart(s) to select the appropriate SDM methodology based on data type and 

availability (Flow Charts 4.2-4.5). 

3. Independently research the selected modeling approach(es) to determine if they are 

a) suitable for the objective and b) feasible for the data and experience of the user. 

4. Build the selected SDM(s) according to best practices (see next section). 

 

Although this framework is intended to guide selection of one or more modeling 

approaches, it is, of course, the responsibility of users to ensure they independently assess 

modeling options, understand their function and limitations, and have data that meets 

requirements. Elith & Leathwick (2009b) as well as Jakeman et al. (2006) provide lists of 

key steps in good modeling practice.  

 

Users should familiarize themselves with the limitations of their prediction metrics based 

on data type (Table 4.3) to ensure they correctly report uncertainty. For example, users 

should note that calculation of population density requires detection probability to be 

accounted for, which can include a measure of temporary emigration, or use standardized 

indices (Bayne et al. 2011; Chandler et al. 2011; Sólymos et al. 2013). PO or PB data can 

only predict relative likelihood of presence (Table 4.1), and this prediction is relative to 

bias, survey effort, and detectability. Some PO or PB model types can account for survey 

effort or bias, making predictions more realistic. At present, empirical SDMs based on PO 

or PB data can only predict relative occurrence (and thus relative habitat suitability) on the 

landscape. More information may soon be available from new methods that are able to 

incorporate measures of detectability (Dorazio 2014), and indeed, has begun in some 

spheres (Sólymos et al. 2013). The user should keep these considerations in mind when 
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navigating this framework to generate a prediction appropriate for their conservation 

objective. 

 

4.4.2. Examples of use 

4.4.2.1. Scenario 1 

 

A district manager for a nature conservancy group is tasked with purchasing a new land 

holding to conserve the habitat of Sage Grouse (Centrocercus urophasianus Bonaparte) in 

a small portion of southern Alberta, Canada. She examines the data she has available: 

literature on sage grouse biology, as well as location data and a measure of detectability 

from a mark-recapture study on sage grouse in her province. She consults Flow Chart 1 

(Figure 4.4) to identify which prediction metric she can calculate. She reads the first 

question, ‘Do you have spatially geo-referenced extinction, colonization, survival, 

fecundity, genetic similar, and/or other demographic and physiological parameters for 

populations in your study area?’. She does not, so she answers ‘no’. The next question asks 

if she has estimates of detectability from repeated measures, to which she answers yes. She 

can calculate occupancy. 

 

Next, she visits Table 4.5 and chooses a conservation objective. She chooses ‘select habitat 

for inclusion in reserve system (single species)’. Since she has data to engage in occupancy 

modeling, she follows directions to visit Flow Chart 3 (Figure 4.6). Starting from the top 

of the chart, she follows the instructions and concludes that she will model occupancy and 

abundance, using Unmarked Populations for the algorithm family. 

 

She researches unmarked occupancy models (Fiske & Chandler 2011), and builds her 

model using the statistical package unmarked (Fiske & Chandler 2011) based on the data 

from the detectability study. She projects the output using environmental covariates in GIS 

to generate a spatial prediction of Sage Grouse occupancy on the landscape. After this 

point, she can decide to employ other methods, such as cost analysis (e.g. Moilanen et al. 

2009) to prioritize which land to pursue purchasing.  
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4.4.2.2. Scenario 2 

 

A government biologist has been assigned to the recovery team for the Canada Warbler 

(Cardellina canadensis L.) and tasked with identifying critical habitat for conservation 

nationwide. His data include point counts from breeding bird atlas surveys, but he also has 

opportunistic observations captured by citizen science as well as museum records. He has 

a total of 200 location records in his study area. He has abundance information from the 

atlas surveys, but not the other data, so when following Flow Chart 1 (Figure 4.4) he is 

forced to answer ‘no’ to “Does your dataset include abundance information in the form 

counts? (AA)”, and chooses occurrence as his prediction metric. 

 

At this stage he also evaluates his potential environmental covariates, and a literature 

survey on the biology and habitat requirements of Canada Warblers, he identifies four 

covariates for which have GIS layers. He visits Table 4.5 and at first selects “Identify 

critical habitat” as his conservation objective. However, he does not have the data to predict 

occupancy or population viability, so instead, he chooses “increase or stabilize population 

numbers”. He visits Flow Chart 2 (Figure 4.5) to select an algorithm family.  

 

Beginning at the top of the flow chart, he determines he has enough presence observations 

to proceed. He has not controlled for autocorrelation (see Best practices), so he filters his 

data to ensure each presence point is a minimum distance apart. His species data is PO. 

The flow chart then asks if he can generate a mapped estimate of sampling bias. He creates 

a GIS mask that incorporates an index of survey effort available from breeding bird atlas 

data, as well as a measure of the spatial clustering around towns and cities from the 

occurrence data contributed by citizen scientists. The flow chart directs him to use a type 

of machine learning model: maximum entropy. He uses the program Maxent (Phillips & 

Dudik 2008; Elith et al. 2011) to construct a model using the Canada Warbler occurrence 

data, the sampling bias mask, and his environmental covariates. The output is a colour-

coded map of relative probability of occurrence of Canada Warblers on the landscape. He 

includes the output in his report, but is careful to note that critical habitat, legally speaking, 



 

   

88 

 

could not be modelled. Identifying critical habitat would require predicting occupancy or 

population viability, which was not possible with the available data.  

 

4.4.2.3. Scenario 3 

 

A sophisticated research team is engaged in continental-scale project to identify potential 

climate refugia for dozens of vertebrate species. For avifauna, they have count data from 

large long-term monitoring projects. They also have a series of standardized indices to 

correct their abundance information for detectability (AA + DET). Using Flow Chart 1 

(Figure 4.4), they determine that they can calculate population density. 

 

When examining conservation objectives (Table 4.5), they decide to choose both ‘Assess 

effects of climate change’ and ‘Select habitat for inclusion in a reserve system (Multi-

species)’. As directed, they review Flow Chart 4 (Figure 4.7), which instructs them to visit 

Flow Chart 2 (Figure 4.5). They decide to construct an SDM to predict population density 

for each species, and stack their outputs. However, they do not have data on interspecies 

interactions, so they cannot include this information as a model covariate. Though they are 

instructed to visit Flow Chart 2, as they also wish make a dynamic model, they first consult 

Flow Chart 5 (Figure 4.8). After reviewing the chart, they research mechanistic life-history 

information for all of their species, and conclude they can include dispersal distance 

constraints as a model covariate. Finally, they visit Flow Chart 2 (Figure 4.5) to select an 

algorithm family. 

 

Based on their presence-absence data and their advanced modeling knowledge, they 

conclude that they will develop the models using artificial neural networks. However, they 

wish to compare projections calculated by different methods, and thus also choose to apply 

an ensemble method that ‘stacks’ the outcome of their neural networks along with other 

methods, such as boosted regression trees, Bayesian methods, and random forests. Using 

their detectability corrected-data, they produce aggregated climate refugia models for many 

landbird species based on multiple algorithms, and then ‘stack’ the models for each species 

to identify general priority conservation areas. 
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4.5. BEST PRACTICES 

 

A number of best practices as well as rules of thumb have emerged out of general consensus 

in the SDM literature, and these should be followed during modeling. In order to construct 

an SDM using occurrence data, there must be at least 10 ‘presence’ locations of the species 

for each covariate used (Harrell 2001). Too many covariates (or too few species 

occurrences) will lead to model overfitting, where the covariates are fit not only to the data, 

but the noise as well, increasing explanation power for training data but greatly reducing 

the ability to make realistic predictions (McGill 2013). Regardless of model type, modeling 

should always include a validation procedure, which is commonly done using statistical 

model selection criteria (Guisan & Zimmermann 2000; Johnson & Omland 2004). In 

general, it may be best to choose more conservative models to avoid overfitting, as giving 

inaccurate estimates of suitable, available, or occupied habitat may mislead conservation 

planners (Crawford & Hoagland 2010). Overfitting also reduces model transferability to 

new locations or times (Wenger & Olden 2012) 

 

Ensemble modeling is a relatively recent technique of combining predictions of species 

distributions that are produced using multiple algorithms to hone prediction accuracy 

(Brotons et al. 2004). Ensemble modeling has come to be recognized as a best practice 

among SDM experts (Araújo & New 2007; Marmion et al. 2009; Meller et al. 2014). Given 

that each SDM technique has its own uncertainties and limitations, combining outcomes 

from multiple models is thought to reduce a major source of variability, or, at the very least, 

give estimates of important sources of uncertainty (Meller et al. 2014). In an ensemble, 

models can be combined through an averaging, ordination, or other synthetic technique, or 

weighted according to model fit using, for example, Bayesian algorithms (Franklin 2009; 

Coetzee et al. 2009). 

Spatial autocorrelation violates an assumption of independence among samples in models, 

and is rarely addressed by modelers (Franklin 2009). Spatial autocorrelation is the degree 

of clustering or dispersion, by which neighbouring samples tend to be more similar than 

those far apart. The effects of spatial autocorrelation may be more problematic when trying 

to capture the influence of covariates than when making spatial predictions (Franklin 
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2009). Best practices requires spatial autocorrelation to be addressed either before 

modeling using spatial filtering, during modeling by using an autoregressive or autologistic 

algorithm, or after modeling by comparing a spatial method with a non-spatial one (Carroll 

& Johnson 2008; Franklin 2009). It is important during this phase to consider factors of 

conspecific attraction that could be incorporated as mechanistic processes in models. 

 

Ultimately, users must choose models for which they have (or can gather) data, but must 

keep in mind error arising from overlooking aspects of population dynamics (Pearson 

2007). Although habitat suitability and fitness parameters are correlated, users should be 

careful not to mistake a prediction of habitat suitability as being a representative surrogate 

for physiological parameters such as fecundity (e.g. Brambilla & Ficetola 2012). For this 

reason, many modelers (Dormann 2007; Araújo 2009; Fordham et al. 2012; Bateman et al. 

2013) suggest that it may almost never be appropriate to ignore the importance of 

ecological processes such as biotic interactions, dispersal, and movement when projecting 

future distributions. Predictions of species distribution are powerful tools, but no substitute 

for long-term datasets on abundance that can be analyzed for trend information. 

 

Extrapolation remains a challenge for empirical SDMs. Franklin (2010, 2013) suggests 

three approaches for creating more realistic extrapolations: (1) Incorporating information 

about species biology and ecological limitations during the conceptual formulation of 

empirical models; (2) Using the output from a mechanistic SDM as an input to an empirical 

SDM, or vice versa (termed ‘linked’ modeling); and (3) Comparing empirical and 

mechanistic predictions. Few investigations have been done into model transferability, and 

accuracy of extrapolation can vary by model algorithm (see Wenger & Olden 2012 for an 

assessment of transferability of four common algorithms). These methods do not only 

apply to extrapolation. Arguably, many (if not all) conservation objectives could benefit 

by the increased realism of prediction that arises from having a spatial representation of 

habitat suitability that is informed by mechanistically-derived information about 

population dynamics, rather than just correlative relationships with environmental 

covariates. In reality, this information is difficult and expensive to capture, although it is 

increasingly available. 
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Mechanistic models offer the capacity to include measurements of fecundity and 

demography into estimations of species niche, allowing for much more realistic and 

powerful predictions. For example, a combination of habitat suitability and connectivity 

can potentially be used as a surrogate for probability of persistence (Nicholson & 

Ovaskainen 2009). SPVA can be used to assess habitat occupancy based on age and stage 

of the organism, as well as include genetic factors (McCarthy 2009), and enables 

optimizing selection of reserve area and estimating extinction risk. If genetic differentiation 

is observable on the scale being studied, samples of genetic information from different 

populations offers new ways of estimating dispersal and fecundity with effort that is 

constantly decreasing due to technological advancements (Sunnucks 2011).  

 

However, empirical SDMs are often used in place of mechanistic SDMs and generalized 

to make population predictions, because data on dispersal, competitive effects, 

connectivity, and other assessments of constraints on population are lacking (Elith & 

Leathwick 2009b), especially at large scales. Although it is recommended that outputs of 

empirical and mechanistic SDM be compared to better understand the ecology of the 

species and refine predictions (Kearney & Porter 2009), this is often impossible. At larger 

scales, the theoretical drawbacks of empirical SDMs (being only able to model realized 

niche) may not be as pronounced (Hirzel & Lay 2008), especially if dispersal limitations 

and habitat heterogeneity are accounted for  (Pulliam 2000). 

 

Finally, most single-species models do not include the possibility of species interactions 

and community level effects (e.g. predation, competition) due to lack of data and increased 

model complexity. Single-species empirical SDMs are generally biased to over-predict the 

amount of used and available habitat (Laurent et al. 2011). Thus, interactions at the 

community-level should be included where possible, though this is largely dependent on 

spatial scale and available data. Particularly if conservation objectives are aimed at more 

than one species, multi-species modeling should be considered. Multispecies SDMs are 

becoming more accessible to produce mapped outputs for assemblages of species, and 

some allow for explicit modeling of interactions between species (Kissling et al. 2012).  
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4.6. RECOMMENDATIONS AND FUTURE DIRECTIONS 

 

Species distribution modeling has advanced quickly in recent decades, and the pace of 

improvement and proliferation of new techniques will almost certainly continue. The 

framework presented here is intended to help lead prospective users through the morass of 

the many different SDMs to select an appropriate modeling approach. Although many of 

the modeling methods mentioned in this review have been directly compared to one another 

to evaluate performance, many have not. Araújo & Guisan (2006) identified the need to 

investigate conceptual and algorithmic uncertainties in models, and more thoroughly 

evaluate the strengths and limitations of each of the (many) current approaches. It should 

be noted, though, that the differences in performance between model types are typically 

smaller than differences among species being modelled (Franklin 2009). 

 

Overall, it is imperative that users understand the limitations of model prediction to avoid 

misuse (Araújo & Peterson 2012). An ongoing challenge for SDMs, particularly 

extrapolative ones, is including biotic interactions such as competition, mutualism, and 

others (Elith & Leathwick 2009c). Many of these issues have been pointed out ad nauseum 

throughout the development of SDMs, with many authors calling for integrated empirical-

mechanistic models (Larson et al. 2004; Guisan & Thuiller 2005; Phillips et al. 2009; 

Huntley et al. 2010; Higgins et al. 2012) and greater collaboration between theoretical and 

functional ecologists (Guisan et al. 2006).  

 

These sought-after integrated models have yet to appear, but the beginnings of a 

convergence are evident: empirical models incorporating detectability estimates and 

survey bias (Sólymos et al. 2013; Dorazio 2014), and models combining empirical and 

dynamic elements (Peterman et al. 2013; Merow et al. 2014). However, these early 

attempts are computationally and theoretically intensive, lack consensus, and are not yet 

‘packaged’ for wider adoption. Given that in the present investigation, only 17 of 128 

modeling algorithms incorporated mechanistic elements, there is a need for clear methods, 

grounded in ecological theory, to integrate mechanistic and empirical SDMs.  
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Ultimately, a greater dialogue is needed between conservation practitioners and modelers 

to meet conservation needs more effectively (Guisan et al. 2013). SDMs provide powerful 

tools for conservation planning, but more attention must be paid to designing SDMs for 

direct use and interpretation by conservation managers. All modeling approaches need 

clear documentation and to be available in customizable packages (such as add-ins to 

common statistical programs or stand-alone graphical user interfaces (GUI)). Robust user 

groups need to be available to help develop user guides and support through 

troubleshooting. This may require a ‘paring down’ of the many multitudes of SDMs to 

focus on developing easy-to-use packages for algorithms that perform well, as well as a 

specific focus on integrating mechanistic SDMs with empirical ones. Until such 

approaches are widely available, the framework presented here can help guide the user 

through selection of both empirical and mechanistic models. By following the steps 

outlined in this review (Table 4.5), the user can use best practices to select the most 

appropriate and powerful tools to manage for the conservation objectives at hand. 
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4.7. TABLES AND FIGURES 

Table 4.1:  Empirical species distribution models in common use, organized by model type and algorithm family. 

 

Model 

Family 

Algorithm 

Type Description 

Data 

Type* Common Models Advantages Drawbacks 

Model 

estimation 

parameter 

Envelope 

and 

Similarity 

Envelope 

and Niche 

Bounds species 

presence; predicts 

habitat suitability 

based on meeting 

habitat profiles within 

the bounded area(s) 

PO BIOCLIM; 

Environmental 

Niche Factor 

Analysis (ENFA) 

Works in data-poor 

situations; can be 

modified to include 

mechanistic processes 

Typically 

outperformed by other 

methods 

Ranks likelihood 

of occurrence 

Envelope 

and 

Similarity 

Kernel Infers species range 

spatially, often with 

telemetry data. Does 

not typically include 

environmental 

covariates 

PO Kernel Estimation Useful for basic range 

delineation 

Not appropriate for 

prediction 

Ranks likelihood 

of occurrence 

Envelope 

and 

Similarity 

Distance 

and 

Similarity 

Assess multivariate 

distance measures to 

describe mean vector 

of covariates with 

relation to the 

response variable 

PO DOMAIN; General 

Dissimilarity 

Modeling; Distance 

Measures 

(Mahlanobis, 

Euclidean, etc.) 

Works in relatively 

simple situations with 

few interactions 

Not ideal when data is 

limited/ habitat 

variables are 

dynamic. Linear 

relationships only, 

requires continuous 

covariates. Less 

robust compared to 

machine learning 

Ranks likelihood 

of occurrence 
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Model 

Family 

Algorithm 

Type Description 

Data 

Type* Common Models Advantages Drawbacks 

Model 

estimation 

parameter 

Expert-

based 

Expert-led Expert knowledge of 

species biology and 

ecology is used to 

select parameters 

thought to be of high 

value 

SB Convex or alpha 

hulls; GIS overlays; 

Habitat Suitability 

Index (HSI) 

Modeling 

Can be used in 

situations with little or 

no PO or PA data. 

Typically 

outperformed by other 

methods when PO or 

PA data are available 

Ranks relative 

probability of 

occurrence 

Machine 

Learning 

Decision 

Tree 

Decision trees classify 

responses according to 

monothetic 

hierarchies. Typically, 

many decision trees 

will be generated and 

then averaged or 

combined according to 

model specifications 

PA/AA Boosted Regression 

Trees (BRT); 

Classification and 

Regression trees 

(CART); 

Classification Tree 

Analysis (CTA); 

Mixture 

Discriminant 

Analysis (MDA); 

Random Forest (RF) 

Works with categorical 

and nonlinear 

covariates. Copes with 

unknown covariate 

interactions, missing 

data, and poorly-known 

species ecology. 

Typically better than 

single classification 

trees or parametric 

methods. No need for 

prior data 

transformation or 

elimination of outliers. 

Not ideal when 

species response is 

expected to be linear 

or smooth. Rare 

classes need to be 

sufficiently 

represented, though 

this is corrected for in 

boosting methods like 

BRT/RF 

Predicts 

probability of 

occurrence (if 

detection bias is 

controlled for, 

otherwise 

relative 

likelihood) 

Machine 

Learning 

Genetic 

Algorithm 

Classification rules 

"evolve", based on 

random mutations and 

"fitness", until an 

optimal solution is 

reached 

PO Genetic Algorithm 

for Ruleset 

Production (GARP) 

Can be used to predict 

species distribution or 

to select between 

models in an ensemble. 

Performs poorly 

compared to 

regression-based, 

machine learning, and 

neural network 

methods 

Ranks likelihood 

of occurrence 
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Model 

Family 

Algorithm 

Type Description 

Data 

Type* Common Models Advantages Drawbacks 

Model 

estimation 

parameter 

Machine 

Learning 

Maximum 

Entropy 

Estimates the most 

uniform distribution 

(or maximum entropy) 

of sampling points 

compared to 

background locations, 

using constraints 

derived from data 

PB MaxEnt Good for data-poor 

situations. Relatively 

easy to implement. 

Requires measures of 

survey bias to be 

robust. Often 

considered 

inappropriate for 

forecasting 

Predicts relative 

likelihood of 

occurrence (if 

sampling bias is 

controlled for, 

otherwise ranks 

likelihood) 

Machine 

Learning 

Neural 

Networks 

Derives nonlinear 

composite variables 

and models response 

as a function of these 

features 

PA/AA Artificial Neural 

Networks (ANN) 

Have outperformed 

other methods in 

comparative studies. 

Extremely complex. Predicts 

probability of 

occurrence (if 

detection bias is 

controlled, or 

relative 

likelihood) 

Occu-

pancy  

Unmarked 

Popula-

tions 

Model spatial variation 

in density by 

incorporating 

measures of detection 

probability across 

repeated measures of 

organisms 

DET N-Mixture; 

PRESENCE; 

unmarkedR; 

Hierarchical 

Bayesian; single 

season; multi-

season 

Can provide a more 

accurate picture of 

organism distribution. 

Requires multiple-

visit estimates of 

detectability, usually 

small scale. 

Probability of 

occupancy; 

probability of 

population 

density; 

probability of 

abundance 

Statistical Ordination Orients species 

distributions in 

environmental space. 

PA/AA Canonical 

Correspondence 

Analysis (CCA); 

Redundancy 

Analysis (RDA) 

Useful for community 

modeling. 

Few comparisons 

exist with other 

methods. More 

difficult to generate 

mapped spatial map. 

Predicts relative 

likelihood of 

occurrence 
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Model 

Family 

Algorithm 

Type Description 

Data 

Type* Common Models Advantages Drawbacks 

Model 

estimation 

parameter 

Statistical Regression-

based 

Predicts response 

variable from 

covariates based on 

their observed 

importance. Variations 

extend linear models 

that can accommodate 

non-normal response 

variables. 

PB/PA/

AA 

Generalized 

Additive Models 

(GAM); General 

Estimating 

Equations (GEE); 

Generalized Linear 

Mixed Models 

(GLMMs); 

Geographically 

Weighted 

Regression (GWR); 

Logistic/auto-

logistic models; 

Multivariate 

Adaptive 

Regression Splines 

(MARS); Resource 

Selection Functions 

(RSF) 

MARS can account for 

local variable 

interactions (varying 

across distribution). 

Locally-weighted 

approaches, such as 

GWR and GLMMs, can 

be used to identify scale 

dependency and can 

outperform other 

methods in some cases. 

Not ideal with non-

binary categorical 

variables. Covariate 

interactions must 

generally be known in 

advance. GAMs are 

not well suited for 

extrapolation. GEEs 

are not robust for 

spatial prediction. 

RSFs are useful for 

highly mobile species. 

Predicts 

probability of 

occurrence (if 

detection bias is 

controlled for, 

otherwise 

relative 

likelihood) 

*Data Types: SB – information about species biology and ecology derived a priori; PO – presence only, with georeferenced locations of species 

occurrence; PB – presence background, with georeferenced locations of species occurrence and pseudo-absence data from sites presumed ‘available’; 

PA – presence-absence, with georeferenced locations of occurrence or abundance data at sites where species are documented to be present and 

absent. AA – similar to PA, but includes numerical counts at presence sites, and can be used to derive population density if abundance is corrected 

for detectability; and DET – derived from sampling where detectability is measured using repeat visits, mark-recapture techniques, or estimated 

using statistical offsets. 
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Table 4.2: Mechanistic species distribution models in common use, organized by model type and input data category. 

 

Model Type Category Description 

Data 

Type* 

Common Model or 

Model Suites Model estimation parameters** 

Occupancy  Marked 

Populations 

Models viability and/or spatial 

variation in density by marking and 

recapturing/re-sighting organisms 

PV/DET DISTANCE; CAPTURE; 

MARK 

Probability of occupancy; population 

density; abundance; viability 

Mechanistic 

Niche Model 

 Models traits governing the 

fundamental niche, such as thermal 

tolerance 

PV Custom; PHENOFIT 

(trees) 

Probability of occurrence; viability 

Spatial 

Population 

Viability 

Analysis 

Evolu-

tionary 

Trait 

Models 

Uses information on the evolutionary 

relationships of organism to predict 

traits. Can be applied to empirical 

SDMs to assess habitat constraints. 

PV Phylogenetic Generalized 

Least Squares (PGLS) 

Probability of occurrence; viability  

Spatial 

Population 

Viability 

Analysis 

Landscape 

Genetics 

Evaluates functional connectivity 

using all possible paths through a 

landscape 

PV Isolation-by-resistance; 

Least cost path; Genetic 

distance; Graph theory; 

Circuit theory 

Probability of occurrence; viability 

Spatial 

Population 

Viability 

Analysis 

Meta-

population 

Assumes a patchy distribution of 

species across habitats, and uses 

unique information from 

populations/subpopulations to model 

features of the metapopulation. 

PV/DET Structured Patch 

Occupancy 

Metapopulation Models 

(SPOM); Structured 

metapopulation models; 

Spatial simulation 

models; Population 

matrix models; RAMAS 

GIS 

Probability of occupancy; population 

density; abundance; viability 
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Model Type Category Description 

Data 

Type* 

Common Model or 

Model Suites Model estimation parameters** 

Spatial 

Population 

Viability 

Analysis 

Spread 

models 

Includes species-specific constraints 

related to dispersal. Can be applied to 

projections of empirical SDMs 

PV MigCLIM; SHIFT; grid-

based models 

Probability of occurrence; viability 

*Data Types: SB – information about species biology and ecology derived a priori; DET – derived from sampling where detectability is measured 

using repeat visits or mark-recapture techniques, or estimated using statistical offsets. 

**The parameter ‘viability’ is inclusive of parameters like fecundity, colonization, breeding success, carrying capacity, population growth rates, and 

others. 
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Table 4.3:  Prediction metrics for species distribution models based on data type. 

 

Model 

Type Data Type Acronym Prediction metric 

Empirical 

 

Species biology (a priori) SB Rank relative probability of 

occurrence/habitat suitability 

Presence-only PO Rank likelihood of occurrence 

Presence-background PB Relative likelihood of occurrence 

constrained by condition 

Presence-absence PA Relative likelihood of occurrence 

Abundance-only AO Rank likelihood of abundance 

Abundance-absence AA Relative abundance 

Detectability-corrected abundance-

absence 

AA + DET Predicted abundance/Population 

density 

Detectability-corrected presence-

absence 

PA + DET Likelihood of occupancy 

Mechanistic 

 

Viability PV Viability (e.g. breeding success, 

survival, fecundity, etc.) 

Viability (Physiological tolerance) PV + SB Predicted range 

Detection-corrected viability PV + DET Likelihood of occupancy 

Mixed Presence-only and viability PO + PV Rank likelihood of occupancy/viability 

Presence-absence and viability PA + PV Likelihood of occupancy/viability 
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Table 4.4:  Reported prediction metrics of 100 evaluated species distribution models by algorithm type. Column headers: M = model 

type, AF = Algorithm family, n = number of models evaluated, SCP = Spatial conservation prioritization, SA = Species 

assemblages/richness, RM = range mapping, CC = Responses to climate change, PV = Population viability, SDM = 

Theoretical contribution to SDM development. 

 

M AF n 

SC

P SA RM 

C

C PV SDM Included publications 

Empir

-ical 

Envelope 

and Niche 

Models 

7 4 1  1  5 Atamian et al. 2010; Brotons et al. 2004; Elith et al. 2006; Levinsky et al. 

2013; Titeux et al. 2007; Wisz et al. 2008 

Kernel 2   2    Auer 2008; Hamel & Ozdenerol 2009 

Distance & 

Similarity 

6 2 2  2  4 Elith et al. 2006; Levinsky et al. 2013;  Wisz et al. 2008 

Expert-led 11 11   1  1 Beaudry et al. 2010; Beazley et al. 2005; Glennon 2009; Government of 

Victoria 2013; Holmes et al. 2008; Jetz et al. 2007; Jobin et al. 2005; 

McCorkle et al. 2006; Rittenhouse et al. 2008; Tirpak et al. 2009; 

Westwood 2012 

Decision 

Tree 

22 8 7  10 2 5 Barbet-Massin et al. 2012; Barket et al. 2014; Coetzee et al. 2009; 

Cumming et al. 2013; Distler et al. 2015; Elith et al. 2006; Goetz et al. 

2010; Haché et al. 2014; Kreakie et al. 2012; Liu et al. 2011; Matthews et 

al. 2004; Schuetz et al. Shirley et al. 2013; Vallecillo et al. 2009; Wisz et 

al. 2008 

Genetic 4 2 1  1  2 Duffe et al. 2008; Elith et al. 2006; Levinsky et al. 2013; Wisz et al. 2008 

Maximum 

Entropy 

15 8 2 1 3  4 Buermann et al. 2008; Burnett et al. 2008; Cardador et al. 2015; Duffe et 

al. 2008; Elith et al. 2006; Ferrari 2014; Geupal et al. 2007; Kreakie et al. 



 

   

102 

 

1
0
2
 

M AF n 

SC

P SA RM 

C

C PV SDM Included publications 

2012; Levinsky et al. 2013; Randall 2013; Sohl 2014; Velásquez-Tibatá et 

al 2013; Wisz et al. 2008; Yost et al. 2008 

Neural 

Networks 

4 1 3  2  1 Barbet-Massin et al. 2012; Coetzee et al. 2009; Cumming et al. 2013; 

Foody 2005 

Unmarked 

Population

s 

5 3 1    1 Collier et al. 2012; De wan et al. 2009; Kéry and Royl 2008; Royle et al. 

2008; Vierling et al. 2013 

Regression

-based 

45 20 14  12 4 20 Alridge & Boyce 2007; Bacaro et al. 2011; Barbet-Massin et al. 2012; 

Bellis et al. 2008; Betts et al. 2006; Brotons et al. 2004; Bustamante & 

Seoane 2004; Carroll & Johnson 2008; Carroll et al. 2006; Coetzee et al. 

2009; Elith et al. 2006; Fisichelli et al. 2012; Foody 2005; Gibson et al. 

2004; Giordano et al. 2010; Heikkinen et al. 2007; Huntley et al. 2006; La 

Sorte & Thompson 2007; McPherson & Jetz 2007; Mitchell et al. 2006; 

Nielsen 2007; Parons et al. 2009; Stralberg & Gardali 2007; Stralberg et 

al. 2006; Vallecillo et al. 2009; van Riper et al. 2014; Vernier et al. 2008; 

Voegeler et al. 2011; Wisz et a. 2011 

Mech-

anistic 

Evolution-

ary Trait 

1    1   Bradshaw et al. 2014 

Meta-

population 

1     1  Aldridge and Boyce 2007 

Spread 

models 

4 3    2 2 Larson and Sengupta 2013; Merow et al. 2011; Shanahan and Possingham 

2009; Zozaya et al. 2011 
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Table 4.5:  Steps for selecting a species distribution modelling method to inform 

management decisions for common conservation objectives. 

 

Example Conservation 

Objective Steps to follow 

Assess biodiversity metrics Flow Chart 4: Approaches for developing 

community-level distribution models (Figure 4.7) 

Assess effects of climate change Flow Chart 5: Approaches for developing climate 

projection models (Figure 4.8) 

Estimate historical distribution Flow Chart 5: Approaches for developing climate 

projection models (Figure 4.8) 

Identify critical habitat Flow Chart 3: Selecting a model for predicting 

occupancy and/or population viability (Figure 4.6) 

Increase or stabilize population 

numbers 

Flow Chart 2: Selecting a model for predicting 

occurrence, abundance, and/or population density 

(Figure 4.5) 

 

OR 

Flow Chart 3: Selecting a model for predicting 

occupancy and/or population viability (Figure 4.6) 

Reintroduction/Translocation Flow Chart 3: Selecting a model for predicting 

occupancy and/or population viability (Figure 4.6) 

Select habitat for inclusion in 

reserve system (single species) 

Flow Chart 2: Selecting a model for predicting 

occurrence, abundance, and/or population density 

(Figure 4.5) 

 

OR 

Flow Chart 3: Selecting a model for predicting 

occupancy and/or population viability (Figure 4.6) 

Select habitat for inclusion in 

reserve system (multi-species) 

Flow Chart 4: Approaches for developing 

community-level distribution models (Figure 4.7) 

Predicting spread of invasive 

species 

Flow Chart 3: Selecting a model for predicting 

occupancy and/or population viability (Figure 4.6) 
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Figure 4.1:  Boxplots showing year of publication for 128 landbird species distribution 

models categorized by algorithm family, with error bars showing 95% 

confidence interval. 
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Figure 4.2:  Accuracy of reported prediction metrics for 128 landbird species 

distribution models categorized by algorithm family. ‘Correct’ models 

reported both appropriate prediction metric and expressed uncertainty by 

data type. ‘Partly correct’ models indicated correct prediction type, but 

inaccurately defined uncertainty. ‘Incorrect’ models reported the wrong 

prediction metric by data type. 

 

 

Figure 4.3:  Accuracy of reported prediction metrics for 128 landbird species 

distribution models categorized by stated conservation goal. ‘Correct’ 

models reported both appropriate prediction metric and expressed 

uncertainty by data type. ‘Partly correct’ models indicated correct 

prediction type, but inaccurately defined uncertainty. ‘Incorrect’ models 

reported the wrong prediction metric by data type. 
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Figure 4.4: Flow Chart 1, Steps to identify possible prediction metrics based on 

available data for species in a given study area.  
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Figure 4.5: Flow Chart 2, Selecting a model for predicting occurrence, abundance, 

and/or population density. 
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Figure 4.6: Flow Chart 3, Selecting a model for predicting occupancy and/or 

population viability. 
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Figure 4.7: Flow Chart 4, Approaches for developing community-level distribution 

models. 
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Figure 4.8: Flow Chart 5,  Approaches for developing climate projection models. 
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CHAPTER 5   SPECIES DISTRIBUTION 

MODELING IN MARITIME NATIONAL 

PARKS 

Westwood, A., Solymos, P., Fontaine, T., Bayne, E. 2015. Estimating population density of the 

Rusty Blackbird (Euphagus carolinus), Olive-Sided Flycatcher (Contopus cooperi), and 

Canada Warbler (Cardellina canadensis) in national parks in New Brunswick and Nova 

Scotia. Report prepared for Parks Canada on behalf of the Boreal Avian Modelling Project, 

University of Alberta: Edmonton. 63pp. 

 

5.1. INTRODUCTION 

 

The Rusty Blackbird, Olive-Sided Flycatcher, and Canada Warbler have experienced steep 

population declines (COSEWIC 2006, 2007, 2008), and are federally-listed species at risk 

(SAR; Government of Canada 2011). Particularly for Rusty Blackbird and Canada 

Warbler, annual rates of decline have been among the highest in the eastern portion of their 

Canadian breeding range (Environment Canada 2014a). A unique subspecies of Rusty 

Blackbird, E. c. nigrans, breeds in Nova Scotia. Both nationally and in Maritimes, these 

SAR occupy federally, provincially, and privately protected lands, outside of which forest 

and wetland areas are undergoing harvesting, resource extraction, recreation, and other 

managed uses. 

 

Protected areas are a tool used to achieve biodiversity conservation by limiting human 

intervention in an area. In Canada, Parks Canada’s mandate includes ensuring the 

ecological integrity of its lands (Parks Canada 2011), which includes  the stewardship of 

species at risk within its lands. Under the National Accord for the Protection of Species at 

Risk, Parks Canada is involved with the development and support of recovery strategies 

and implementation of recovery actions, and also engages in other monitoring and 

management activities.  

 

Protected areas contribute to biodiversity and community well-being, but their 

effectiveness can vary depending on regional and management objectives (Leverington et 
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al. 2010). Forested areas of New Brunswick have undergone substantial fragmentation in 

recent years (Betts et al. 2003). The total proportion of forest dominated by mixedwood 

stands in New Brunswick has decreased over the past half-century because of altered 

disturbance regimes and forest harvesting (Amos-Binks et al. 2010). In Nova Scotia, only 

32.5% of the province’s “natural landscape types” were considered adequately represented 

within the protected areas system in 1994 (NSDNR 1994). More recent estimates suggest 

that 48% of “natural landscape types” are represented at a satisfactory or near-satisfactory 

level in Nova Scotia (David MacKinnon, pers. comm.). Though protected areas holdings 

continue to expand (Province of Nova Scotia 2013), expansions were not completed in a 

fashion that prioritized protection of suitable habitat for Olive-sided Flycatcher, Canada 

Warbler, and Rusty Blackbird, or the wet forest ecosystems they occupy. As available 

forest outside of park boundaries continues to be developed, it is important to know the 

potential for existing protected areas to protect suitable habitat, and to assess if birds are 

more or less likely to be found in protected areas than other areas in the same region. 

Additionally, estimates of population size in local areas can allow for evaluation of 

population viability. 

 

In national parks in New Brunswick and Nova Scotia, the status of Rusty Blackbird, Olive-

sided Flycatcher, and Canada Warbler populations has been assessed as unrankable due to 

a lack of information (Parks Canada Agency 2011a, 2011b, 2011c). At present, population 

sizes for these species cannot be estimated from data collected within the parks themselves 

due to low sample sizes. Conservation of these species within these areas requires detailed 

information on habitat distribution and quality, which is presently not available at a scale 

suitable for management. The paucity of information requires that predictive modelling be 

used to estimate population sizes based on regional knowledge about species-habitat 

relationships. Despite potential sources of uncertainty in the estimation process, mapped 

regional estimates of species distribution are essential to guide conservation planning 

(Sanderson et al. 2002). For spatial conservation, datasets at a scale of 1 km2 or greater are 

of limited value for land use planning at the watershed or municipal level (Woolmer et al. 

2008). To inform reserve design and land management, predictions are needed as close as 

possible to those of the resolution of individual forest stands (Betts et al. 2006a).  
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5.1.1. Modelling species associated with wet forest habitats 

 

Recent reviews of the breeding ecology of all three species have been provided by the Birds 

of North America Online (Altman & Sallabanks 2010; Reitsma et al. 2010; Avery 2013a). 

Rusty Blackbird predominantly nest in small conifers near wet areas (Matsuoka et al. 

2010). Olive-sided Flycatcher predominantly occupy coniferous forest sites near patches 

of early seral vegetation, including both the edges of bogs and burns in natural habitats, 

and clearcut edges in disturbed areas (Altman & Sallabanks 2010).  Canada Warbler 

require a well-developed shrub layer and a complex forest floor (Reitsma et al. 2010), and 

can also be locally abundant in regenerating forests (i.e., 6–30 years post-disturbance) 

following anthropogenic or natural disturbances (Lambert & Faccio 2005). Though found 

in a variety of forest types, Canada Warbler is most common in wet mixed forest. Rusty 

Blackbird and Olive-sided Flycatcher have large territories (10-20 ha), with habitat 

immediately around the nest site comprising only a small area within a heterogeneous 

matrix. Canada Warbler have small territories, whose composition is more homogenous, 

and in southwestern Nova Scotia are almost exclusively confined to wet forest habitat 

(CHAPTER 2). 

 

Depressional forest wetlands, determined by run-off or groundwater processes, are 

recognized as important breeding bird habitat for many species (Riffell et al. 2006), though 

they have not been studied for these species in particular. In the U.S., forested wetlands 

have been decreasing at faster rates than other types of forests (Abernathy & Turner 1987). 

However, high-quality spatial reference data for these ecosystems are scarce, making them 

difficult to represent in species distribution models. Aerial delineation of wet forest areas 

is difficult, as the canopy over wet areas is often continuous with canopy of upland forest 

(Riffell et al. 2006). 

 

Because of these issues, wetland habitat types can be poorly recorded, and where they are 

recorded, accuracy can fluctuate widely due to the ephemeral nature of many types of 

wetland (Gómez-Rodríguez et al. 2008; Skagen et al. 2008). Species distribution models 

(SDMs) for species reliant on GIS layers describing wetlands have, at least in some cases, 
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performed poorly (Kreakie et al. 2012). For these reasons, it is common to use proxy data 

to predict the locations and types wetlands in models, such as depth to water table or soil 

wetness index. Particularly for species associated with wet forest areas, it is important to 

test various approaches to modelling wet areas. Accuracy can be gauged by assessing 

model fit, to help select the most effective representation of wet areas.  

 

SDMs predicting species distribution across the landscape are particularly useful for 

conservation (CHAPTER 4), as they generate an easily-interpretable mapped product that 

can be used to assess critical areas for management. SDMs associate species observations 

and environmental covariates to describe species distributions on the landscape (Franklin 

2009; Elith & Leathwick 2009c). They give insight into both ecological relationships for 

the species, as well as maps of habitat species occurrence, occupancy, abundance, or 

population density that can be used to inform conservation strategies (Elith & Leathwick 

2009b; Franklin 2009; Moilanen et al. 2009). For species at risk, it is important to uncover 

habitat preferences and develop spatially-explicit predictions of population distribution on 

the landscape to inform conservation.  

 

The Boreal Avian Modeling (BAM) project has generated national-scale species 

distribution models for Olive-sided Flycatcher and Canada Warbler, with models based on 

landcover (Hache et al. in prep) and climate space (Lefevre et al. n.d.; Cumming et al. 

2013). Using count data for birds in models allows for prediction of population sizes and 

distributions (Elith & Leathwick 2009c). However, national models based on coarse 

resolution data (1-10 km2 or greater) are not designed to describe local variation in habitat 

suitability, or to engage in stand-level planning. Additionally, national-scale models 

develop their habitat based on habitat preferences determined from point counts across the 

range. This is particularly relevant for these SAR, which exhibit different habitat 

preferences across their range. Using regional abundance data combined with finer scale 

covariates, constrained regionally to reflect the local ecology of the species, may improve 

SDM estimates. The resulting information about the availability, quality, and distribution 

of breeding habitat can be used for on-the-ground management, as well as to understand 

ecological associations of these species at the easternmost extreme of their range.  
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This chapter included five main objectives: (1) Generate predictive models and maps of 

bird density for Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler and evaluate 

the contribution of different covariates, (2) Estimate population sizes in 4 national parks in 

Nova Scotia and New Brunswick for these three species, (3) Map predicted density 

estimates and their uncertainty, (4) Compare model selection across subsets representing 

wet habitat using three different methods (wetland delineation, depth to water table, and 

the interaction of depth to water table with forest cover), (5) Compare estimates between 

national parks and replicate areas in corresponding ecoregions to evaluate the contribution 

of national parks to species conservation.  

 

I used the BAM point count dataset to develop high-resolution predictive SDMs for Olive-

sided Flycatcher, Canada Warbler, and Rusty Blackbird in Maritime national parks, using 

a library of high-resolution ecological covariates selected a priori based on known species-

habitat relationships. The modeling method used was Poisson log-linear, with corrections 

for detectability and variation in sampling effort across study protocols (Sólymos et al. 

2013). A branching forward stepwise variable selection process with bootstrapping was 

used to minimize bias in covariate selection. The density predictions allow for evaluation 

and comparison of habitats within parks to guide SAR planning and management. 

 

5.2. METHODS 

5.2.1. Study area 

 

The four national parks under consideration (Kouchibouguac, Fundy, Cape Breton 

Highlands, Kejimkujik) are within the eastern Canadian provinces of New Brunswick (NB) 

and Nova Scotia (NS). Prince Edward Island National Park was excluded as the geospatial 

layers necessary for analysis were not available in the province.  Kejimkujik National Park 

and Historic Site is divided into a mainland park and seaside adjunct, the latter of which 

was excluded from this analysis due to its small size and predominantly coastal ecosystem. 

All parks in this analysis have a coastal component except Kejimkujik (Mainland), which 

is located in the centre of southwest Nova Scotia. Coastal areas of parks were also included 

in analysis. New Brunswick encompasses 7.5 million ha, and borders Québec and Maine. 
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NS is peninsular, and encompasses 5.8 million ha, and is connected to the remainder of 

North America through a 24 km wide isthmus. NS and NB represent the extreme eastern 

extent of the breeding range for all three species.  

 

Nova Scotia includes 9 distinct ecoregions, and its ecosites have been divided into two 

main groups: Acadian and Maritime Boreal (Keys et al. 2011b). NB is similar, with 7 

unique ecoregions and high forest heterogeneity across the landscape (NBDNR 2007). 

Much of both provinces are forested, though fragmented by forest harvesting operations.  

Non-forested areas tend to comprise a patchwork of urbanization and agriculture, as well 

as coastal and highlands environments. In addition to the national parks, there are many 

provincially protected areas, totaling 1.2 million ha. As of 2013, 9% of the total land base 

consisted of protected areas, whereas national parks accounted for 1.4% of the total study 

area. Sixteen ecoregions occur in New Brunswick and Nova Scotia, and of these, national 

parks in the region capture seven within their borders (Ecological Stratification Working 

Group 1995). 

 

5.2.2. Avian dataset 

 

BAM has compiled avian point count data in the boreal and hemi-boreal region from 

Canada and the U.S. (Cumming et al. 2010b, borealbirds.ca), including areas of forested 

and non-forested habitat.  It currently comprises over 1.5 million avian point count records 

conducted between 1990 and 2014, from over 125 000 locations in North America. This 

dataset also includes long term projects such as provincial Breeding Bird Atlases and the 

Breeding Bird Survey, as well as contributions from universities, governments, and 

industrial partners. Varying point count methodologies are harmonized, allowing for 

quantitative density estimation (Barker et al. 2015) and the coverage of the dataset helps to 

account for potential roadside survey bias. Density is corrected for detectability and 

variable survey methodologies using the QPAD method (Sólymos et al. 2013). Count 

harmonization includes estimating singing rates and effective detection radius, while 

controlling for effects of survey protocol and environmental and temporal covariates on 

detection probability. Of BAM’s point count locations, 15 021 occur in the study area 
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(Figure 5.1), with years ranging from 1996 to 2013. At least one Rusty Blackbird, Olive-

sided Flycatcher, and Canada Warbler were observed at 77, 801, and 658 point count 

locations, respectively (Table 5.2). 

 

Songbirds have a local breeding site embedded in a much larger home range used for 

foraging or extra-pair copulation (Taylor & Krawchuk 2005). Two buffer sizes were 

established around each point. A small buffer was chosen to reflect the local area around 

the bird location (termed local buffer), which was 50 m (0.8 ha) for Canada Warbler and 

Rusty Blackbird, and 100 m for Olive-sided Flycatcher. A 250 m (19.6 ha) buffer (termed 

territory buffer) was created to incorporate information about habitat attributes at the 

territory size of an Olive-sided Flycatcher and Rusty Blackbird, which have been 

documented as ranging from 10-45 ha (COSEWIC 2006, 2007) with a mean range size of 

15 ha for Rusty Blackbird (Powell et al. 2010a). Canada Warblers have much smaller 

territories, ranging from 0.4 ha to 0.75 ha (COSEWIC 2006). As Canada Warbler territories 

often occur in clusters, potentially indicating conspecific attraction, the larger buffer 

includes neighbouring habitat features that may be important for suitability (Dr. Leonard 

Reitsma, Plymouth University, pers. comm.). These buffer sizes are consistent with other 

studies of scale (Taylor & Krawchuk 2005). 

 

5.2.3. Models 

 

In accordance with Haché et al. (2014), Poisson log-linear models were generated using a 

branching hierarchy model-building process (a forward stepwise variable selection 

approach). Bootstrap smoothing procedures were applied to address model uncertainty.  

The modeling method used a nesting hierarchy to evaluate the importance of covariates, 

which I divided into 8 ‘stages’ based on a priori assumptions (Figure 5.3). Stages were 

numbered 1-8, and variables associated with earlier stages thought to be more proximate 

to the birds’ mechanisms of habitat selection. The 8 stages included 1) wetness; 2) forest 

cover; 3) forest structure; 4) landscape complexity, 5) anthropogenic disturbance; 6) 

distance from roads; 7) landscape connectivity; and 8) protection status. 
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I evaluated three different ways of defining wet forest habitat by running different model 

subsets, and changing the geospatial layers used to describe wetness as well as the 

presence/absence of an interaction term between forest cover and wetness. The variables 

used to describe forest cover were consistent between subsets. The resulting three subsets 

were WETLANDS, WETNESS, and WETNESS x Forest (hereafter WETxFOR). Each 

model included the same candidate variables for model stages 3-8, but differed in candidate 

variables for stages 1 and 2. For the WETxFOR subset, stages 1 and 2 were merged into a 

single step representing an interaction between the two variable types. To allow for direct 

comparison against the WETxFOR subset, stages 1 and 2 were run as a single step in the 

other subsets. 

 

These steps were designed to approximate those used in the national SAR models by Haché 

et al. (in prep), but were adapted based on availability of finer scale covariate data. 

Furthermore, I did not control for temporal variation or spatial variation given the relatively 

limited extent of the study area and dataset. All R scripts for offsets and models are 

available at https://github.com/psolymos/bamanalytics 

 

5.2.3.1. Extraction of spatial covariates 

 

Spatial covariates were extracted at all BAM point count locations in the study area. All 

GIS layers were projected in NAD83 (CSRS), the official reference system for coordinates 

in New Brunswick and recommended for Nova Scotia (New Brunswick 2011; Seely 2011). 

Covariates were extracted from GIS layers using ESRI ArcGIS 10.2.2 (Esri Inc. 2014), 

PostGIS (Obe & Hsu 2011), R (R Core Team 2015), and/or Geospatial Modelling 

Environment (Beyer 2012). In total, 61 covariates (Table 5.4) were extracted from 19 

source GIS layers (Table 5.5), with vector data having a minimum mapping unit of <50 m, 

and raster data having a minimum resolution of 10 m and a maximum of 90 m. 

 

 

 

https://github.com/psolymos/bamanalytics
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5.2.3.2. Wetness 

 

The first model stage included covariates expressing the moisture regime of the bird 

location and surrounding area. The WETLANDS subset used wetlands layers classified 

from aerial photography were collected at the provincial level for NS and NB, and the 

wetland classes harmonized using vegetation cover equivalencies within the Canadian 

Wetlands Classification System (National Wetlands Working Group 1997; Table 5.6). 

Coastal wetlands (e.g. salt marshes) were excluded from the analysis. The dominant 

harmonized wetland vegetation class at each point count was determined within the local 

buffer for each species (as the wetland class which occupied a greater proportion of the 

buffer). Stream length and wet areas perimeter (including wetlands) within the territory 

buffer was totaled, as well as the proportion of territory buffer classified as wetland. These 

covariates were used in the WETLANDS model subset (Table 5.3). 

 

The remaining model subsets, DTW and DTWxFor, used measures of depth to water table 

obtained from wet areas mapping (Forest Watershed Research Centre n.d.; Murphy et al. 

2007). Wet areas mapping derived from LiDAR-based point cloud data or a digital 

elevation model data allows for delineation of flow channels, wet areas, and an estimate of 

the depth to water table (DTW) from soil surface (White et al. 2012). DTW is more closely 

related to soil and vegetation type than the commonly-used terrain wetness index (Murphy 

et al. 2009). DTW ≤ 1 m has been used to capture wet areas, has good correspondence with 

field-mapped wetlands, and performs better than soil wetness index (Murphy et al. 2007, 

2009; White et al. 2012). For these two model subsets, the proportion of territory buffer 

with DTW ≤ 1 m was extracted (Figure 5.2), as well as the standard deviation of DTW 

across the territory buffer. 

 

5.2.3.3. Forest cover and structure 

 

Forest cover information was derived from the Common Attribute Schema for Forest 

Resource Inventories (CASFRI; Cumming et al. 2010a; Cosco 2011) which combines 

provincial forest resource inventory databases into a comprehensive classification of the 
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most common attributes present across jurisdictions. CASFRI includes data regarding 

stand species composition, canopy height, closure, and other characteristics. CASFRI data 

was extracted within local and territory buffers, with many polygons occurring within a 

single buffer area. Due to the proprietary nature of some of the data, CASFRI information 

was not available across the entirety of the study region, limiting prediction ability in some 

areas of New Brunswick. 

 

Forest cover and structure variables were used in all subsets. Tree species composition at 

the stand level was calculated by converting the percent cover of each tree species into area 

coverage within both local and territory buffers. As there were generally multiple polygons 

within each buffer, areal coverages were summed to give the m2 occupied by each tree 

species within the buffer.  Mean and standard deviation of canopy closure and height were 

calculated for both buffer sizes. 

 

5.2.3.4. Disturbance 

 

Disturbance information was acquired from both the CASFRI and Human Footprint (HF) 

mapping. The HF uses four types of data as proxies for human influence: population 

density, land transformation, accessibility, and electrical infrastructure (Sanderson et al. 

2002). Datasets representing these influences were standardized and scored according to 

percent influence, then combined as an index. Woolmer et al. (2008) mapped HF at 90 m 

resolution for the Northern Appalachian/Acadian ecoregion of North America. Forest-

specific disturbances were documented by the CASFRI, including burns, cuts, partial cuts, 

slides, windfalls, and other unspecified disturbances. The proportion of territory buffer 

disturbed was calculated by dividing CASFRI disturbance polygon areas within buffers by 

the total area of the buffer. Disturbance was not coupled temporally with point counts. 

 

5.2.3.5. Complexity, connectedness, and roads 

 

Landscape complexity was characterized by Anderson et al. (2012) as the variety of 

microclimates present in a site, measured as a function of topography, elevation range, and 
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moisture gradients. They calculated the number of landforms in an area and modified this 

total by elevation range and wetland density. Wetland density was used to give a measure 

of micro-topographical variation in flat landscapes (Anderson et al. 2012). Landscape 

complexity was calculated in units of 1000 ha hexagons across the landscape, and 

categorized as below mean, mean, or above mean for the North Appalachian/Acadian 

ecoregion (Figure 5.3). I extracted mean complexity class within each territory buffer. 

 

Mean index of local connectedness was also extracted for each territory buffer. Local 

connectedness measures the strength of structural connections between natural ecosystems 

on a local landscape (Anderson & Clark 2012). Connectedness measures the outward 

permeability of ecological flows, based on land cover and land use types, from one cell to 

its neighbours as predicted using resistant kernel analysis. 

 

Distance to roads was calculated as distance from the BAM point count location to the 

nearest road feature from the National Road Network  (Government of Canada 2014; 

Figure 5.4). Finally, all BAM point counts were intersected with layers of parks and 

protected areas (including federal, provincial, and municipal protected areas) and classified 

as being either in unprotected or protected lands. 

 

5.2.3.6. Pre-processing and modelling 

 

The BAM data system consists of projects that were collected using heterogeneous 

protocols (Barker et al. 2015), and corrects for this heterogeneity through the application 

of statistically calculated offsets (Sólymos et al. 2013). Avian abundance data were 

corrected based on metrics that control for the effects of survey protocols on detectability 

of each species, based on time of day, time of year, and duration and radius of survey. 

Species-specific offsets (including singing rate) are combined with satellite-derived habitat 

information to estimate densities of territorial males. Offsets are applied to recorded 

abundance for each species at each point, and the resulting estimates used in the models.  
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All covariates were standardized, and CASFRI tree species were re-classed into genus (see 

https://github.com/psolymos/bamanalytics/blob/master/R/maritimes.R for model code and 

standardization specifics). At each stage, covariates at varying scale were available for 

selection. A bootstrap procedure was generated 240 times in an iterative approach using 

consistent AIC (CAIC = 0.5 AIC + 0.5 BIC) to determine the frequency with which a 

particular predictor variable was selected (Burnham & Anderson 2002; Table 5.3). This 

reduced overfitting and variance in predictions. Between model subsets, selection 

frequency was used to determine, out of the 240 iterations, how often a particular subset 

was selected. Subsets which are selected more frequently are expected to have higher 

explanatory power. Within model subsets, selection frequency was used to estimate the 

contribution of a given variable to explaining variance at each stage, which variables 

having high selection frequency contributing more strongly to the model.  

 

Variables were ranked by selection frequency at each stage, which the most-selected 

variable receiving the top rank. At each stage, the top-ranked variable was selected, and 

added to variables in the next stage (therefore meaning the ‘null’ model for a subsequent 

stage represented the top variables selected at the previous stages). This bootstrap 

procedures and selection process also allows for measures of model validation and 

prediction uncertainty (Haché et al. 2014), as determined by the distribution of variable 

selection. For example, if many variables are selected in equal proportions at a given stage, 

this is a more uncertain model than if a single variable is selected at a very high proportion. 

 

5.2.3.7. Spatial predictions of density 

 

To predict density of each species across the study area as well as estimate population sizes, 

the surface of NB and NS was covered with a net of points, located at the centre of a grid 

of 250 m by 250 m cells. The resulting 2.12 million points were buffered at the local and 

territory sizes for the three species. At each point, all model covariates were extracted using 

the same process as the avian data layers.  

 

https://github.com/psolymos/bamanalytics/blob/master/R/maritimes.R
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I used the habitat models to generate density estimates at each point. Population sizes 

within national parks were calculated by summing converted density estimates from points 

within national parks. Though available covariates made it possible to predict at finer 

spatial resolution, computational limitations restricted predictions to the grid size used 

here. For each species, I used mean predicted density at prediction points to produce a 

digital raster at 250 m for each national park, showing spatial resolution of density and 

coefficient of variation. 

 

5.2.4. Comparison of National Parks to other lands 

 

Of the 2.1 million prediction points in NS and NB, 28 880 were within the area covered by 

the four national parks: Cape Breton (15 447 points), Kouchibouguac (3 410 points), Fundy 

(3 367 points), Kejimkujik Mainland (6 358 points), and Kejimkujik Seaside (298 points). 

A 5 km x 5 km grid was superimposed over the study area, with each grid square numbered. 

Grid squares were further divided by ecoregion. Within each National Park, the number of 

grid squares falling into each ecoregion was tallied, as well as the number of prediction 

points within the grid square. Each grid square was considered a replicate, and prediction 

point within that replicate considered a sample. Kejimkujik Seaside was excluded from 

analysis due to the low number of grid squares containing samples. Replicates could 

contain up to 400 samples, and only replicates with less than 30 samples were omitted from 

analysis. The number of replicates per park, separated by ecoregion, ranged from 7 (Fundy, 

ecoregion 123) to 38 (Cape Breton Highlands, ecoregion 129; Table 5.7).  

 

For comparison between predictions of species density between national parks and non-

park lands in the same ecoregion, sampling was replicated in random grid squares. All non-

park grid squares within the ecoregion were assigned random numbers from 1 to 1000 

using a python code, and arranged from smallest random number to largest. Grid squares 

in an ecoregion were selected to be replicates sequentially until matching the number of 

replicates for the corresponding national park in that ecoregion. This randomization and 

selection process was repeated for samples within each replicate. For example, consider a 

grid square that the park boundary passes through, and part of the square is contained within 
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the park, and the remainder is outside. Out of the possible 400 sample points in that square, 

350 are within the park boundary and included for analysis. In the matching grid square for 

that ecoregion (replicate), only 350 randomly selected samples were included out of the 

potential maximum of 400. If a replicate did not contain enough prediction points to meet 

the necessary samples (for example, the ecoregion boundary was placed such that only 200 

of 400 prediction points fell within the ecoregion, although 350 samples were  necessary), 

that replicate was excluded and the next random grid square chosen. A total of 123 grid 

squares were chosen as comparison replicates to match the 123 grid squares falling within 

park boundaries (Figure 5.5). 

 

For Olive-sided Flycatcher and Canada Warbler, predicted mean number of territorial 

males/ha at the replicate level was compared between the protected areas and remainder of 

the ecoregion using t-tests. Rusty Blackbird was excluded from testing for not meeting 

distributional assumptions of normality and homoscedacity.  

 

5.3. RESULTS 

5.3.1. Variable selection 

 

For each species, I compared all of the models across all bootstrapped runs to determine 

overall selection frequency between the subsets. In the Rusty Blackbird and Canada 

Warbler models, WETNESS was the most-selected subset at all stages. In Olive-sided 

Flycatcher models, WETxFOR was the most-selected subset at all stages. At each stage, 

up to 14 variables were selected at least once, though in all cases, the two most-selected 

variables accounted for at least 62.5% of the total selection at that stage, with a mean of 

83% of selection.   

 

As only stages 1&2 differed amongst the three subsets, this stage was the point of 

divergence for selection. At the first stage of selection (grouped between stages 1&2), 

Rusty Blackbird was somewhat divided, with WETNESS, WETLANDS, and WETxFOR 

selected 56.6%, 37.8%, and 4.2% of the total, respectively (Table 5.10). For Olive-sided 

Flycatcher, at initial stages WETxFOR was selected in 91% of cases, followed by 
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WETLANDS and WETNESS at 7% and 2% of cases, respectively (Table 5.17;Table 5.11). 

The Canada Warbler model selected WETNESS almost exclusively, at 99.2% of the total 

selection (Figure 5.20), and WETLANDS was not selected at all. Within each model 

subset, the covariates with the highest selection frequency at each stage were chosen for 

inclusion in the final models (Table 5.8). Variable selection paths show relative selection 

frequency of each variable within each subset, allowing for a visual estimate of uncertainty 

(Figure 5.6). 

 

5.3.1.1. Rusty Blackbird 

 

For the Rusty Blackbird, out of the 240 bootstrapped runs, the WETNESS model subset 

had the most runs with the lowest AIC (136 runs), followed by WETLANDS (94 runs) and 

WETxFOR (10 runs). The spread of selection between models is indicative of poor 

agreement. Variables consistently selected among model subsets were considered to be the 

most important predictors of variation on density. In the first and second stages of the 

WETNESS subset, DTW_STD and CASFRI territory were the most selected variables by 

a large margin (Table 5.12). At the first stage in the WETLANDS subset, WET_VEG local 

was the most selected as well as CASFRI territory in the second stage, though by a smaller 

margin. For the remainder of the model, the best predictors of Rusty Blackbird abundance 

included CANCL_AV territory, FOOTPRINT territory, and PROTECT local. The most-

selected variable was consistent across subsets for most stages (Figure 5.13; Figure 5.6 

Rusty Blackbird). 

 

In the first and second stages of the WETNESS subset, DTW_STD and CASFRI territory 

were the most selected variables (Table 5.12). At the first stage in the WETLANDS subset, 

WET_VEG local was most selected as well as CASFRI ter in the second stage, though by 

a smaller margin. For the remainder of the model, the best predictors of Rusty Blackbird 

abundance included CANCL_AV ter, FOOTPRINT ter, and PROTECT, local. The most-

selected variable was consistent across subsets for most stages (Table 5.13). Densities were 

generally higher where dominant forest cover consisted of Abies spp. and Picea spp. at 

both buffer sizes, and were lower when other forest cover categories dominated  
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(Figure 5.7; Figure 5.8). Rusty Blackbird density showed no clear pattern with DTW_STD 

or WET_PROP across the territory (Figure 5.9). Neither did patterns emerge relating to 

any structural variables or landscape complexity (Figure 5.11; Figure 5.12) Human 

footprint (Figure 5.13) and on-road condition (Figure 5.14) was associated with a decrease 

in density. while connectedness was associated with an increase (Figure 5.15). A slight 

increase in density was associated with areas that had been disturbed by forest harvesting 

(Figure 5.16) as well as unprotected sites (Figure 5.17). 

 

5.3.1.2. Olive-sided Flycatcher 

 

Amongst the 240 Olive-sided Flycatcher bootstrapped runs, the subset WETxFOR had the 

lowest AIC in 218 runs, whereas WETLANDS had the lowest AIC in 16 runs and 

WETNESS had the lowest AIC in 6 runs. For the WETxFOR subset, the variable 

CASFRIxDTW_PROP territory was selected in 100% of the runs, whereas in the 

WETLANDS subset, WET_LENGTH territory was the most-selected variable 

(Figure 5.17). Variables best explaining Olive-sided Flycatcher abundance included 

HT_STD territory, COMPLEXITY territory, FOOTPRINT territory, and CONNECT 

territory (Figure 5.18). The most-selected variable was the same for each stage across all 

three subsets (Figure 5.6 OSFL). 

 

Olive-sided Flycatcher showed highest densities in forests dominated by Picea spp. (but 

not Picea glauca), Picea mariana, and Abies spp., and the lowest in forests dominated by 

Pinus and deciduous (Figure 5.7). Density of males per hectare increased slightly with 

increasing DTW_PROP at the local level, with a much more dramatic increase at the 

territory level (Figure 5.18). When leading species was interacted with the proportion of 

250 m buffer classified as wet (depth to water table <= 1m), tree species associated with 

higher Olive-sided Flycatcher density followed a similar pattern as when tree cover was 

considered in isolation. For all tree cover types except Alnus spp., Olive-sided Flycatcher 

density increased with a greater proportion of buffer classified as wet (Figure 5.8).   
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At the local level, higher Olive-sided Flycatcher density was associated with lower mean 

canopy closure and standard deviation (Figure 5.10), as well as lower mean height 

(Figure 5.11). When considering the range of standard deviation across the territory, higher 

densities were associated with values closer to the median. Human footprint had a negative 

effect on density (Figure 5.13), as did being on-road (Figure 5.14). Olive-sided Flycatcher 

density increased with greater landscape complexity and connectedness (Figure 5.12; 

Figure 5.15). Protected sites showed slightly higher Olive-sided Flycatcher densities than 

unprotected sites (Figure 5.17). 

 

5.3.1.3. Canada Warbler 

 

When examining model selection between subsets, the subset WETNESS was chosen in 

all of the 240 runs based on having the lowest AIC value. Within that subset, the variable 

DTW_STD territory was selected in all 240 runs (Figure 5.9). CASFRI territory was the 

forest cover variable best explaining Canada Warbler abundance. Across the remaining 

model stages, highly selected variables included CANCL_STD local, COMPLEXITY 

territory, FOOTPRINT territory, and CONNECTIVITY (Figure 5.6 CAWA). 

 

 In the WETNESS subset, higher densities of Canada Warbler males at both scales 

corresponded with forest stands with high proportions of Abies spp., Alnus spp., Picea spp., 

Picea mariana, and lower densities were predicted in stands dominated by Acer spp., Larix 

spp., Picea glauca, and Pinus spp. (Figure 5.7). This was consistent across both scales, 

with the higher proportions of Abies spp. markedly increasing density predictions at the 

territory scale. Higher DTW_PROP were associated with higher densities of Canada 

Warbler, with the effect more pronounced at the territory scale (250 m) (Figure 5.18). For 

forest structure variables, densities peaked just below the median for CANCL_STD at both 

scales, as well as HT_STD and HT_AV (Figure 5.10; Figure 5.11). Landscapes with mean 

to above mean complexity were predicted to have higher densities, as did areas with higher 

connectivity (Figure 5.12, Figure 5.15). 
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With regard to disturbance, densities were reduced in areas with a high human footprint 

(Figure 5.13), however, cuts showed higher densities than undisturbed areas, with a small 

positive association. Burned areas showed very low density predictions (Figure 5.16). Off-

road conditions resulted in higher density predictions (Figure 5.14), and site protection 

status did not have a notable impact (Figure 5.17).  

 

5.3.2. Predictions and population sizes 

 

I produced estimates of mean density of territorial males in National Parks in New 

Brunswick and Nova Scotia for Rusty Blackbird, Olive-sided Flycatcher, and Canada 

Warbler for four Maritime national parks (Figures 19-23). Coefficient of variation was also 

mapped to enhance understanding. In Kouchibouguac, predicted densities of Rusty 

Blackbird and Canada Warbler were generally low except one portion close to the seaside, 

which corresponds on satellite maps to an area of treed bog, whereas areas of high Olive-

sided Flycatcher density were more evenly distributed across the park (Figure 5.19).  

Coefficient of variation did not conform to any obvious pattern. There were some data gaps 

in prediction in this park due to lack of coverage for some covariate layers.  

 

Fundy showed uniformly low predicted Rusty Blackbird densities (Figure 5.20). The few 

small areas of high Olive-sided Flycatcher and Canada Warbler density followed river 

valleys. Coefficient of variation increased on slopes and coastal areas. Cape Breton 

Highlands showed relatively large swathes of high density areas, particularly in the central 

highlands portion of the park (Figure 5.21). Coefficients of variation were greater nearing 

to the coast. 

 

Predicted densities for all species were low across the Seaside Adjunct of Kejimkujik 

except for a few very small patches in estuarine areas. Coefficients of variation increased 

with proximity to the coast (Figure 5.22). Kejimkujik (mainland) appears to have higher 

densities of Olive-sided Flycatcher and Canada Warbler in the western portion of the park, 

with Rusty Blackbird isolated to a few patches. Kejimkujik is relatively well-sampled for 

bird species compared to the other parks, and a dataset of locations of these species was 
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visually compared to the density map (Figure 5.23). Known locations of Olive-sided 

Flycatcher and Canada Warbler recorded from 2005-2015 showed relatively good 

agreement with predicted densities, though a portion of this dataset was included in BAM 

training data. The Rusty Blackbird prediction map showed very poor agreement with 

known locations. Higher coefficients of variation for all species occurred in the eastern side 

of the park.  

 

The total predicted population of territorial males across all national parks was 11 for Rusty 

Blackbird, 358 for Olive-sided Flycatcher, and 1092 for Canada Warbler (Table 5.15). 

Mean predicted Rusty Blackbird population density was < 0.001 territorial males/ha for all 

parks. Olive-sided Flycatcher predicted means ranged from 0.006 males/ha (Kejimkujik 

Seaside) to 0.014 males/ha (Cape Breton Highlands). Kejimkujik Seaside also had the 

lowest mean population density for Canada Warbler, at 0.025 males/ha, whereas Cape 

Breton Highlands had the highest, at 0.045 males/ha. Predicted population sizes in 

Kejimkjujik Mainland were more than twice as high as Fundy National Park, which in turn 

was approximately twice that of Kouchibouguac. 

 

Predicted densities within parks were compared to areas outside of parks in the same 

ecodistrict, results varied. For Olive-sided Flycatcher, predicted densities inside parks were 

equal or greater than that of ecoregion comparison areas for all ecoregions (Table 5.16; 

Figure 5.24). This difference was significant for ecoregions 123 (mean difference = 0.007 

males/ha, n = 7, P < 0.001) and 129 (mean difference = 0.002 males/ha, n = 38, P < 0.001). 

Canada Warbler predicted densities were only higher in parks for ecoregion 123, and the 

differences between parks and randomly selected areas elsewhere in the ecoregion was 

most pronounced in ecoregions 122 (mean difference = 0.024 males/ha, n = 19,  P < 0.001) 

and 129 (mean difference = 0.016, n = 28, P < 0.001). Highest predicted densities of Olive-

sided Flycatcher were observed in ecoregions 128, 124, and 122, with highest densities of 

Canada Warbler observed in ecoregions 122, and 123. 
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5.4. DISCUSSION 

 

I used the largest available avian point count dataset in New Brunswick and Nova Scotia 

to generate habitat models to support population size predictions and conservation. The 

application of species-specific offsets allows for correction of detectability and sample 

bias, homogenizing surveys across protocols. This allows for predicted densities of these 

species that are comparable between species and regions. 

 

5.4.1. Habitat associations and model performance 

 

In my models, covariates describing wetness and forest cover were considered to be the 

most proximate to reflecting biological species needs. Highly-selected covariates do 

correspond with known ecological associations of these three species. My models did not 

include measures of climate, which are commonly used at larger spatial extents. Johnson 

(1980) described a hierarchical model of habitat selection in which climate is viewed as 

controlling first-order selection (determining geographic ranges), and vegetation 

influences second-order selection. Typically, climate conditions are thought to be most 

important at large spatial extents, and vegetation to be an important driver of local variation 

(Forsman & Mönkkönen 2003). Although on smaller scales climate may not be seen as a 

factor, it is important not to omit it from consideration. This is particularly true for birds, 

as this group has been widely documented to have experienced recent distributional shifts 

due to climate change (e.g. Nogués-Bravo et al. 2012). It is anticipated that these shifts will 

continue (Cumming et al. 2013) 

 

Variation in vegetation at scales between 0.1 and 10 ha is a known driver of boreal songbird 

distribution (e.g Bayne & Hobson 1997; Hobson & Bayne 2000; Holmes et al. 2008). The 

contribution of vegetation cover types observed in my models corresponds with known 

ecological associations of these species. Olive-sided Flycatcher was associated with 

coniferous species in which it nests across its range. Higher Olive-sided Flycatcher 

densities corresponded to greater proportions of wetness across the territory buffer, likely 

necessary for meeting invertebrate biomass foraging requirements. Lower mean canopy 
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closures and a median standard deviation of canopy height across the territory suggest sites 

that are patchy, with a mix of treed and open areas. This reflects the species’ preference for 

edges, as they are known to nest in emergent trees alongside wetlands, as well as barrens, 

burns, and cuts (Altman & Sallabanks 2010). 

 

Canada Warbler male density was higher where forest cover was included tree species 

common to mixedwood stands. Although in southwest Nova Scotia Canada Warbler are 

known to nest in ecosystems with a component of Acer rubrum (CHAPTER 2; CHAPTER 

3), Canada Warbler densities were negatively associated with sites with large proportions 

of Acer spp. This may either be an indicator of a dilution effect by grouping Acer at the 

genus level, or reflecting the effect of forest communities in northern Nova Scotia and New 

Brunswick, where A. rubrum swamps are less common. A further explanation may be the 

nature of the small patches that Canada Warbler occupy. Individual effects of tree cover 

variables were stronger at the local scale, corresponding to habitat within the Canada 

Warbler’s small territory. Canada Warbler’s relationship with forest structure variables 

suggest density is higher on patchy landscapes, supported by its association with higher 

landscape complexity. The importance of variable forest structure is important to Canada 

Warbler, who require vertical complexity of trees, shrubs, and forest floor microsites for 

nesting, foraging, and territorial displays (Reitsma et al. 2010). These habitat features may 

be conserved by forest management activities, as non-protected areas had slightly higher 

densities of Canada Warbler than protected areas. Low standard deviation of depth to water 

table indicates a need for a relatively homogenous moisture regime, with wetness being 

consistent across Canada Warbler-occupied sites.  

 

Rusty Blackbird exhibited more variation in model subset selection than other species, and 

also showed few patterns within model-selected variables. This is likely due to the small 

sample size of the training data (77 locations, some of which may have included detections 

in transit), which may have been insufficient to elucidate density-habitat relationships for 

this species. The association with Abies and Picea was consistent with known nesting 

requirements (Matsuoka et al. 2010a; Powell et al. 2014), however, few conclusions can 

be drawn about the habitat preferences of this species from these models.  Due to the 
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highly-divergent selection of the Rusty Blackbird model and unrealistic population 

estimates (e.g. predicting only one male in Kejimkujik (mainland) when more birds have 

been directly observed), predictions and covariate associations for this model should not 

be considered accurate. Models for Olive-sided Flycatcher and Canada Warbler both 

exhibit trends consistent with known species biology and deliver realistic population 

estimates based on the size of the park, and are likely to be reliable. 

 

5.4.2. Depth to water table as a proxy for wetness 

 

Though vegetation cover is often used as the main explanatory covariate for local to 

regional-scale species distribution modelling (e.g. Bustamante & Seoane 2004; Bellis et al. 

2008; Atamian et al. 2010), hydrological variables may predict distribution equally well or 

even greater for some species (Barker et al. 2014). Vegetation cover layers are also limited 

by their static nature due to successional and disturbance processes. Forest inventory layers 

in Nova Scotia have relatively high levels of inaccuracy in areas occupied by Rusty 

Blackbird, Olive-sided Flycatcher, and Canada Warbler (CHAPTER 3).  My results 

suggest depth to water table mapping to be a promising tool for improving model accuracy. 

This type of feature creates microclimates that determine temperature and moisture regimes 

on small scales (Anderson et al. 2012), and is less likely to change as quickly as forest 

cover. 

 

In my analysis, model subsets using depth to water table proved to have the highest 

explanatory power. Surface wetlands layers were drastically outperformed in predicting 

bird abundance, likely due to differences in methods of classification between these GIS 

layers. DTW is able to capture small wetlands that escape delineation from aerial 

photographs (Murphy et al. 2007), and border accuracy surpasses conventional delineation 

from aerial photography (White et al. 2012). Kreakie et al. (2012) compared models for 

waterfowl that DTW as a proxy for wetland features against those that used open wetland 

cover derived from satellite imagery. Their DTW-based models had slightly higher scores 

than wetland cover for an index of classification accuracy. Accurately modelling 

subsurface wetness may be especially important for species like Rusty Blackbird, Olive-
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sided Flycatcher, and Canada Warbler, who use wet forest habitats that are not easily 

identifiable from aerial photography. The WETLANDS subset was never selected for 

Canada Warbler, and rarely selected for Olive-sided Flycatcher, reinforcing that wet forest 

habitat is difficult to detect from traditional aerial delineation of wetlands. 

 

The ability of models to interact forest cover and wetness offers potential to capture wet 

forest habitats that are difficult to capture by other means. For Olive-sided Flycatcher, 

which will nest in forest edges immediately adjacent to relatively dry habitats (as well as 

adjacent to wetlands), the WETxFOR subset was most explanatory. However, Olive-sided 

Flycatcher population density increased with a greater proportion of the territory buffer 

with a DTW ≤ 1 m, reinforcing the importance of moisture regime.  

 

Though DTW data appears more useful than photo-derived wetlands or forest layers alone, 

it should be noted that it does not include information on water extraction and management, 

a factor which may become more pronounced at finer scales (Kreakie et al. 2012). 

Furthermore, increasing availability of high-resolution LiDAR will allow for greater 

identification of features ecologically relevant to these species, such as understory 

deciduous shrub cover. Techniques for this are developing (e.g. Pouliot et al. 2006) and 

have shown effectiveness at predicting habitat for songbirds by characterizing vertical 

canopy structure (Goetz et al. 2010; Vogeler et al. 2013). Such data may be particularly 

useful for species like Canada Warbler, which require a complex vertical structure. 

 

5.4.3. Using national parks to protect species at risk populations 

 

Habitat suitability for these three species has been declining in New Brunswick and Nova 

Scotia (Panjabi et al. 2012). Both Canada Warbler and Olive-sided Flycatcher showed 

negative associations of density with human footprint and roads, as well as the positive 

association with connectedness and complexity. This suggests these species at risk may not 

be able to tolerate an as-yet undefined threshold of anthropogenic disturbance. As 

disturbance was not temporally coupled with point count years in this analysis, further 

work must be done to determine disturbance thresholds. As such, it becomes important to 
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conserve remaining breeding habitat, and permanent protected areas offer a means to do 

so. However, existing protected areas do not adequately capture areas of high density of 

these species, or a large proportion of the extant population. 

 

Partners in Flight completed range-wide population predictions of these species, estimating 

the combined New Brunswick and Nova Scotia populations of Olive-sided Flycatcher and 

Canada Warbler at 8 300 and 73 000 individuals, respectively (Partners In Flight Science 

Committee 2013). However, they use different data sources and methodologies, estimating 

effective detection radius with a different method than the QPAD method used here. Haché 

et al. (2014) used the BAM dataset and QPAD correction to recreate national population 

estimates for Olive-sided Flycatcher and Canada Warbler, constraining them according to 

both BAM and PIF range limits. They estimated the total number of territorial Olive-sided 

Flycatcher males in New Brunswick and Nova Scotia at approximately 12 800, and 166 

Canada Warbler males. When comparing my predicted population sizes in national parks 

to these regional estimates (358 Olive-sided Flycatcher territorial males and 1092 Canada 

Warbler territorial males), national parks encompass 2.8-4.3% of the Olive-sided 

Flycatcher population and 0.65-1.5% of the Canada Warbler population. Given that 

national parks cover 1.4% of the study area, the proportion of population protected is 

representative for Canada Warbler, but is less than half of what is necessary to be 

representative for Olive-sided Flycatcher. It should be noted that the 4 national parks 

studied here encompass natural landscapes, whereas outside of parks, significant 

proportions of the province have been transformed due to agriculture, logging, or other 

disturbances, all of which were included to varying degrees in the random samples of 

ecoregions. Future work should compare populations within forested areas of parks against 

only forested areas in surrounding ecoregions, by eliminating non-forest areas from GIS 

analysis. This may give some insights into habitat quality, rather than just availability.  

 

Parks did have higher predicted densities of Olive-sided Flycatcher than randomly selected 

surrounding areas in the same ecoregion, but Canada Warbler had lower predicted densities 

in protected areas for 5 of 6 ecoregions. These results suggest that national parks in this 

region may have representative areas of usable habitat for Olive-sided Flycatcher, but do 
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not capture adequate habitat for Canada Warbler. Thus protected areas status appeared to 

confer no benefit (or in some ecoregions be slightly negative) for Canada Warbler. Existing 

protected areas may not be adequately capturing high-quality habitat for these species.  

 

As the landscape outside of parks and protected areas continues to change from 

anthropogenic disturbance (such as urban expansion), more areas will be rendered unusable 

for these species. Features I have identified as being important for these species are at risk 

of change or loss. In Nova Scotia, wetlands under 100 m2, unless designated as being of 

special significance, do not receive legal protection (Province of Nova Scotia 2011). 

However, small wetlands may be particularly relevant for these species for foraging 

(Powell et al. 2010a). The proportion of forest dominated by mixedwood stands in New 

Brunswick has been decreasing over the past half-century as related to changing 

disturbance regimes and forest harvesting (Amos-Binks et al. 2010). 

 

In a situation of ongoing population decline and loss and conversion of breeding habitat, it 

is imperative to protect areas with high population densities. However, in New Brunswick 

and Nova Scotia, existing national parks alone are not able to fulfill this role for Olive-

sided Flycatcher and Canada Warbler. Although it is important to ensure the continued 

maintenance and protection of high-density areas within national parks, to effectively 

steward regional populations, national parks managers will need to work in tandem with 

managers of other protected areas, the forest management sector, and the public. 
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5.5. TABLES AND FIGURES 

Table 5.1:  National Parks within the study area of New Brunswick and Nova Scotia. 

 

Province National Park Ecoregions 

Area 

(ha)* 

Perimeter 

(km) 

Centroid 

Lat/Long 

NB Kouchibouguac Maritime Lowlands 24 199 120.5 -64.929104, 

46.828302 

Fundy Southern New Brunswick 

Uplands/Fundy Coast 

21 051 78.2 -65.038689, 

45.618185 

NS Cape Breton Highlands Nova Scotia 

Highlands/Cape Breton 

Highlands 

96 663 212.1 -60.640798, 

46.721488 

Kejimkujik (Mainland) Southwest NS Uplands 39 698 82.5 -65.300387, 

44.371300 

Kejimkujik (Seaside) Atlantic Coast 2 095 70.3 -64.825776, 

43.854574 

*Park area size from GIS layers mapping national parks Canada (Geomatics Canada; Natural Resources Canada) 

 

 

Table 5.2:  Number of Rusty Blackbird (RUBL), Olive-sided Flycatcher (OSFL), and Canada Warbler (CAWA) observed at 

point counts in Nova Scotia and New Brunswick in the Boreal Avian Modeling project database. 

 

Species 
Birds at point count locations 

0 1 2 3 ≥4 

RUBL 46903 50 14 5 8 

OSFL 46179 776 25 0 0 

CAWA 46322 609 41 7 1 
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Table 5.3:  Model subsets and descriptions of covariates used at each stage in hierarchical Poisson log-linear models of Rusty 

Blackbird (RUBL), Olive-sided Flycatcher (OSFL), and Canada Warbler (CAWA) density. All covariates were 

measured at either the local (L) buffer size (50 m for Rusty Blackbird and Canada Warbler, 100 m for Olive-sided 

Flycatcher), or the territory (T) buffer size (250 m for all species). 

 

Model Stage Subset A: WETLANDS Subset B: WETNESS Subset C: WETxFOR 

1. Wetness 1.0 Null 

1.1 Dominant wetland type (L) 

1.2 Perimeter of wetland + stream length 

(T) 

1.3 Proportion wetland (T) 

1.0 Null 

1.1 Proportion of area with DTW 

classified "wet" (≤1 m) (L) 

1.2 Proportion with DTW classified 

"wet" (≤1 m) (T) 

1.3 Standard deviation of DTW (T) 

1-2.0 Null 

1-2.1 Tree species coverage 

(CASFRI) x proportion of area with 

DTW classified "wet" (≤1 m) (L) 

1-2.2 Tree species coverage 

(CASFRI) x proportion of area with 

DTW classified "wet" (≤1 m) (T) 
2. Forest 

Cover 

2.0 Null 

2.1 Tree species coverage (CASFRI) (L) 

2.2 -Tree species coverage (CASFRI) (L) 

2.0 Null 

2.1 Tree species coverage (CASFRI) 

(L) 

2.2 -Tree species coverage (CASFRI) 

(T) 

3. Forest 

Structure 

3.0 Null 

3.1 Mean canopy closure (L) 

3.2 Mean canopy closure (T) 

3.3 Standard deviation of canopy closure 

(L) 

3.4 Standard deviation of canopy closure 

(T) 

3.5 Mean canopy height (L) 

3.6 Standard deviation of canopy height 

(T) 

3.0 Null 

3.1 Mean canopy closure (L) 

3.2 Mean canopy closure (T) 

3.3 Standard deviation of canopy 

closure (L) 

3.4 Standard deviation of canopy 

closure (T) 

3.5 Mean canopy height (L) 

3.6 Standard deviation of canopy 

height (T) 

3.0 Null 

3.1 Mean canopy closure (L) 

3.2 Mean canopy closure (T) 

3.3 Standard deviation of canopy 

closure (L) 

3.4 Standard deviation of canopy 

closure (T) 

3.5 Mean canopy height (L) 

3.6 Standard deviation of canopy 

height (T) 

4. Land-

scape 

Complexity 

4.0 Null 

4.1 Mean landscape complexity (T) 

4.0 Null 

4.1 Mean landscape complexity (T) 

4.0 Null 

4.1 Mean landscape complexity (T) 
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Model Stage Subset A: WETLANDS Subset B: WETNESS Subset C: WETxFOR 

5. Disturb-

ance 

5.0 Null 

5.1 Leading CASFRI disturbances (T) 

5.2 Mean human footprint index (T) 

5.0 Null 

5.1 Leading CASFRI disturbances (T) 

5.2 Mean human footprint index (T) 

5.0 Null 

5.1 Leading CASFRI disturbances 

(T) 

5.2 Mean human footprint index (T) 

6. Road 

Distance 

6.0 Null 

6.1 Distance from road 

6.0 Null 

6.1 Distance from road 

6.0 Null 

6.1 Distance from road 

7. Land-

scape 

Connectivity 

7.0  Null 

7.1 Mean connectivity index (T) 

7.0  Null 

7.1 Mean connectivity index (T) 

7.0  Null 

7.1 Mean connectivity index (T) 

8. Protection 

Status 

8.0 Null 

8.1 Protected/Unprotected 

8.0 Null 

8.1 Protected/Unprotected 

8.0 Null 

8.1 Protected/Unprotected 
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Table 5.4:  Description and short names of covariates used at each stage in hierarchical Poisson log-linear models of Rusty 

Blackbird (RUBL), Olive-sided Flycatcher (OSFL), and Canada Warbler (CAWA) abundance. 

 

Model Stage Covariate Short Name  Type Units 

1. Wetness 

 

Dominant wetland vegetation type WET_VEG  Categorical Vegetation Class 

Stream length + wetland perimeter WET_LENGTH  Continuous m 

Proportion of buffer that is wetland WET_TOTAL  Continuous Proportion 

Proportion of bugger with WAM 

classified as wet (<=1m depth to water 

table) 

DTW_PROP  Continuous Proportion 

Standard deviation of depth to water table DTW_STD  Continuous m 

1-2. Wetness x 

Landcover 

Leading species x wet/not wet Multiple*  Continuous Species x m2 x 

Proportion 

2. Landcover CASFRI cover types and proportion 

within buffer 

Multiple*  Continuous Species x m2 

3. Structure 

 

Mean canopy closure CANCL_AV  Continuous % 

Standard deviation of canopy closure CANCL_STD  Continuous % 

Mean of canopy height HT_AV  Continuous m 

Standard deviation of canopy height HT_STD  Continuous m 

4. Landscape 

Complexity 

Category of landscape complexity 

dominating buffer 

COMPLEXITY  Categorical Class 

5. Disturbance Proportion of buffer disturbed (CASFRI) Multiple**  Continuous Proportion 

Mean human footprint index FOOTPRINT  Continuous Index 
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Model Stage Covariate Short Name  Type Units 

6. Road Distance from road ROAD  Continuous m 

7. Landscape 

Connectivity 

Mean connectedness index CONNECTED-

NESS 

 Continuous Index 

8. Protected 

Areas 

Protection status PROTECT  Categorical Class 

*Variables derived from CASFRI forest cover indicate area occupied by a tree species, including: Abie_bals, Abie_pice, 

Abie_spp, Acer_rubr, Acer_sacc, Acer_spp, Alnu_spp, Betu_alle, Betu_papy, Betu_popu, Betu_spp, Fagu_gran, Frax_spp, 

Hard_into, Hard_nonc, Hard_tole, Hard_unkn, Lari_deci, Lari_lari, NOSC_HARD, NOSC_SOFT, Pice_abie, Pice_glau, 

Pice_mari, Pice_rube, Pice_spoo, Pinu_bank, Pinu_resi, Pinu_spp, Pinu_stro, Pinu_sylv, Popu_balb, Popu_spp, Popu_trem, 

Prun_sero, Quer_rubr, Soft_unkn, Thuj_occi, Tsug_cana, Ulmu, amer, Uncl_spp. Refer to Cosco (2011) for variable descriptions. 

**Variables derived from CASFRI disturbance layers indicate area occupied by a given disturbance type, including: Burn (BU), 

Cut (CO), Other (OT), Partial Cut (PC), Slide (SI), and Windfall (WF). 
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Table 5.5: Spatial data layers used for covariate extraction. 

 

Layer Description 
Data 

Year 

Resol-

ution 

(m) 

Rights Citations 

Avian Point 

Count Dataset 

BAM and BBS project data 2014 vector Boreal Avian Modelling 

Project 

Cumming et al. 

2010 

Common 

Attribute 

Schema for 

Forest Resource 

Inventory 

(CASFRI) 

National extent of provincial forest 

resource inventories, standardized to 

a common schema 

2008-

2014 

 

vector  Cosco 2011; 

Cumming et al. 

2015 

National 

Ecological 

Framework for 

Canada 

Canada's ecological framework, 

including ecozones, ecoprovinces, 

ecoregions, and ecodistricts. 

2013 vector CGDI National 

Frameworks Data; 

Agriculture and Agri-Food 

Canada 

Marshall et al. 

1999 

Human Footprint Extent and relative intensity of 

human influence on terrestrial 

ecosystems via human settlement, 

access, landscape transformation, 

and infrastructure 

2001-

2006 

90 Wildlife Conservation 

Society Canada; 

Conservation Biology 

Institute: Data Basin 

Sanderson et al. 

2002; Woolmer 

et al. 2008 

Landscape 

Complexity 

The variety of microclimates on the 

landscape as function of 

topography, elevation range, and 

moisture gradients 

2001-

2006 

90 The Nature Conservancy - 

Eastern Conservation 

Region; Conservation 

Biology Institute: Data 

Basin 

Anderson et al. 

2012; Anderson 

& Clark 2012 

      



 

 

 

1
4
2
 

Layer Description 
Data 

Year 

Resol-

ution 

(m) 

Rights Citations 

Local 

Connectedness 

Strength of structural connections 

between natural ecosystems on a 

local landscape, measured as 

outward permeability of ecological 

flows from one cell to its 

neighbours 

2005 90 The Nature Conservancy - 

Eastern Conservation 

Region; Conservation 

Biology Institute: Data 

Basin 

Anderson et al. 

2012; Anderson 

& Clark 2012 

National Parks  Boundaries of National Parks 2012 vector Geomatics Canada; Natural Resources 

Canada 

Protected Areas 

– NB 

Boundaries of Protected Natural 

Areas and Provincial Parks In New 

Brunswick. 

2011-

2014 

vector Department of Natural 

Resources/GeoNB 

 

Protected Areas 

– NS 

Boundaries for National Parks, 

Provincial Parks, Provincial 

Wildlife Areas, and other protected 

areas in NS 

2013 vector Nova Scotia Parks and 

Protected Areas New 

Brunswick  

 

Roads Normalized Canadian road network 2014  Government of Canada; 

Natural Resources Canada; 

Earth Sciences Sector; 

Canada Centre for 

Mapping and Earth 

Observation 

 

Streams and 

Waterways - NB 

New Brunswick Hydrographic 

Network, delineating surface 

drainage features for New 

Brunswick 

2012-

2014 

vector New Brunswick 

Department of Natural 

Resources/GeoNB 
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Layer Description 
Data 

Year 

Resol-

ution 

(m) 

Rights Citations 

Streams and 

Waterways – NS 

Provincial hydrographic features at 

1:10 000 scale 

unk vector Nova Scotia Department 

of Natural Resources 

 

Wet Areas 

Mapping – NB 

Map of depth to water table derived 

from digital elevation models, 

indicating likelihood of water 

saturation 

2004-

2005 

10m Forest Watershed 

Research Center, 

University of New 

Brunswick 

Murphy et al. 

2009 

Wet Areas 

Mapping – NS 

Map of depth to water table derived 

from digital elevation models, 

indicating likelihood of water 

saturation 

unk 10m Nova Scotia Department 

of Natural Resources 

Murphy et al. 

2009 

Wetlands – NB Wetlands identified from 1:10 000 

aerial photography, including 

wetland type, vegetation, and 

photograph year 

2003-

2012 

vector NB Department of 

Environment and Local 

Government 

Department of 

Natural 

Resources Fish 

and Wildlife 

Branch 2006 

Wetlands – NS Wetlands identified from 1:10 000 

aerial photography, including 

wetland type, vegetation, and 

photograph year, adapted to the 

Canadian Wetland Classification 

system 

2000-

2002 

30m 

(sharp

-ened 

15m) 

Nova Scotia Department 

of Natural Resources 
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Table 5.6:  Wetland vegetation type equivalencies between NB and NS, as determined from the Canadian Wetlands 

Classification Guide. 

 

NB Veg Type NS Veg Type Equivalent Reclassification 

Forested Hardwood Vegetation  Treed Treed 

Forested Softwood Vegetation  Treed Treed 

Alders  Low shrub/tall shrub Shrub 

Shrub Vegetation, except alders  Low shrub/tall shrub Shrub 

Emergent Vegetation  Graminoid Graminoid 

Open Water  Aquatic Vegetation Aquatic 

Open Water Un-vegetated  Water Water/Exposed 

Coastal/Shoreline Feature Vegetated Salt Marsh (excluded) 

Coastal/Shoreline Feature none (excluded) 

None Exposed Water/Exposed 
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Table 5.7:  Replicates (grid squares) within Maritimes National parks for comparison with replicates randomly sampled 

elsewhere in the corresponding ecoregion. 

 

National Park Ecoregion 

Replicates Ecoregion Area (ha) Percent 

Ecoregion 

in Park 

Total in 

Park 

Number 

Compared In Park Total 

Cape Breton 128 36 27 27,915 1,551,054 1.8% 

129 45 38 68,748 234,077 29.4% 

Fundy 121 12 10 11,430 1,317,982 0.9% 

123 9 7 9,621 481,733 2.0% 

Kejimkujik 

Mainland 

124 25 22 39,698 1,636,318 2.4% 

Kejimkujik 

Seaside 

125 4 0 2,095 728,169 0.3% 

Kouchibouguac 122 22 19 24,199 3,019,141 0.8% 
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Table 5.8:  The two most frequently selected variables at each model stage for three subsets of 240 bootstrapped log-linear 

Poisson model runs for Rusty Blackbird (RUBL), Olive-sided Flycatcher (OSFL), and Canada Warbler (CAWA). 

Results labelled by subset (A – WETLANDS, B – WETNESS, C – WETxFOR) and buffer size (L = local, T = 

Territory). Column title abbreviations: S = Subset, F = Frequency, % = Percent selected. 

 

  

CAWA 

 

OSFL 

 

RUBL 

 

Stage 

 S Stage & Covariate F % S Stage & Covariate F % S Stage & Covariate F % 

1-2. Wetness 

& Forest 

Cover 

B 1.3 DTW_STD (T) 

2.2 CASFRI (T) 

185 77.1 C 1-2.2 

CASFRIxWET_PRO

P (T) 

218 90.8 B 1.3 DTW_STD (T) 

2.2 CASFRI (T) 

118 49.2 

B 1.3 DTW_STD (T) 

2.1 CASFRI (L) 

52 21.7 A 1.2 WET_LENGTH 

(T), 2.2 CASFRI (T) 

16 6.7 A 1.1 WET_TYPE (L) 

2.1 CASFRI (L) 

73 30.4 

3. Forest 

Structure 

B 3.1 CANCL_STD (L) 144 60 C 3.6 HT_STD (T) 116 48.3 B 3.2 CANCL_STD (T) 66 27.5 

B 3.6 HT_STD (T) 68 28.3 C 3.1 CANCL_AV (L) 56 23.3 A 3.1 CANCL_STD (L) 29 12.1 

4. Landscape 

Complexity 

B 4.1 COMPLEX (T) 230 95.8 C 4.1 COMPLEX (T) 171 71.2 B 4.0 Null 104 43.3 

B 4.0 Null 8 3.3 C 4.0 Null 47 19.6 A 4.0 Null 70 29.2 

5. Disturb-

ance 

B 5.2 FOOTPRINT (T) 226 94.2 C 5.2 FOOTPRINT (T) 218 90.8 B 5.2 FOOTPRINT (T) 129 53.8 

B 5.1 CASFRI_DIST (T) 12 5 A 5.2 FOOTPRINT (T) 16 6.7 A 5.2 FOOTPRINT (T) 87 36.2 

6. Road 

Distance 

B 6.0 Null 203 84.6 C 6.0 Null 211 87.9 B 6.1 ROAD_DIST 95 39.6 

B 6.1 ROAD_DIST 35 14.6 A 6.0 Null 11 4.6 A 6.0 Null 71 29.6 

7. Landscape 

Connectivity 

B 7.1 CONNECT (T) 238 99.2 C 7.1 CONNECT (T) 119 49.6 B 7.0 Null 89 37.1 

C 7.1 CONNECT (T) 2 0.8 C 7.0 Null 99 41.2 A 7.0 Null 75 31.2 

8. Protection 

Status 

B 8.0 Null 128 53.3 C 8.0 Null 149 62.1 B 8.1 PROTECT (L) 134 55.8 

B 8.1 PROTECT (L) 110 45.8 C 8.1 PROTECT (L) 69 28.8 A 8.1 PROTECT (L) 93 38.8 
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Table 5.9:  Selection frequencies of covariates at model stages 3-8 within three subsets of 240 bootstrapped log-linear Poisson 

model runs for Canada Warbler. Covariates are labelled by buffer size, local (L) and territory (T). Column title 

abbreviations: F = Frequency, % = Percent selected. 

 

   WETLANDS WETNESS WETxFOR 

Stage Stage and Covariate % F % F % F 

Struct 3.0 Null 0.0 0 0.0 0 0.0 0 

3.1 CANCL_AV (L) 5.4 13 3.3 8 3.3 8 

3.2 CANCL_AV (T) 12.1 29 5.0 12 1.7 4 

3.3 CANCL_STD (L) 58.3 140 60.8 146 67.1 161 

3.4 CANCL_AV (T) 0.0 0 0.0 0 0.0 0 

3.5 HT_AV (L) 3.3 8 2.5 6 0.4 1 

3.6 HT_STD (T) 20.8 50 28.3 68 27.5 66 

Complex 4.0 Null 24.6 59 3.3 8 17.5 42 

4.1 COMPLEXITY (T) 75.4 181 96.7 232 82.5 198 

Disturb 5.0 Null 0.0 0 0.0 0 0.0 0 

5.1 CASFRI_DIST (T) 19.2 46 5.0 12 9.2 22 

5.2 FOOTPRINT (T) 80.8 194 95.0 228 90.8 218 

Road 6.0 Null 87.5 210 85.4 205 90.8 218 

6.1 ROAD (L) 12.5 30 14.6 35 9.2 22 

Connect 7.0 Null 0.0 0.0 0.0 0 0.0 0 

7.1 CONNECT 100.0 240 100.0 240 100.0 240 

Protect 8.0 Null 40.4 97 53.8 129 47.1 113 

8.1 PROTECT (L) 59.6 143 46.3 111 52.9 127 
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Table 5.10: Selection frequencies of covariates at each model stage across three subsets of 240 

bootstrapped log-linear Poisson model runs for Rusty Blackbird. 

 

Stage Subset Covariate* F % 

1-2. Wetness 

& Forest 

Cover 

WETNESS DTW_STD (T), CASFRI (T) 118 49.2 

WETLANDS WET_TYPE (L), CASFRI (L) 73 30.4 

WETLANDS WET_TYPE (L), CASFRI (T) 15 6.2 

WETxFOR Null 10 4.2 

WETNESS DTW_STD (T), Null 7 2.9 

WETNESS DTW_STD (T), CASFRI (L) 5 2.1 

WETLANDS WET_TYPE (L), Null 3 1.2 

WETNESS WET_PROP (T), CASFRI (T) 2 0.8 

WETNESS WET_PROP (T), CASFRI (L) 2 0.8 

WETNESS WET_PROP (T), Null 1 0.4 

WETNESS WET_PROP (L), CASFRI (T) 1 0.4 

WETLANDS WET_LENGTH (T), Null 1 0.4 

WETLANDS Null, CASFRI (L) 1 0.4 

WETLANDS Null, Null 1 0.4 

3. Forest 

Structure 

WETNESS CANCL_STD (T) 66 27.5 

WETLANDS CANCL_STD (L) 29 12.1 

WETLANDS CANCL_AV (L) 28 11.7 

WETNESS CANCL_AV (L) 26 10.8 

WETNESS Null 20 8.3 

WETLANDS HT_STD (T) 19 7.9 

WETNESS CANCL_STD (L) 11 4.6 

WETNESS HT_STD (T) 10 4.2 

WETLANDS CANCL_STD (T) 8 3.3 

WETxFOR CANCL_STD (T) 6 2.5 

WETLANDS Null 5 2.1 

WETxFOR CANCL_AV (T) 4 1.7 

WETLANDS CANCL_AV (T) 4 1.7 

WETNESS HT_AV (L) 2 0.8 

WETNESS CANCL_AV (T) 1 0.4 

WETLANDS HT_AV (L) 1 0.4 

4. Landscape 

Complexity 

WETNESS Null 104 43.3 

WETLANDS Null 70 29.2 

WETNESS COMPLEXITY (T) 32 13.3 

WETLANDS COMPLEXITY (T) 24 10 

WETxFOR Null 7 2.9 

WETxFOR COMPLEXITY (T) 3 1.2 

5. Distur-

bance 

WETNESS HUMAN_FOOTPRINT (T) 129 53.8 

WETLANDS HUMAN_FOOTPRINT (T) 87 36.2 

WETxFOR HUMAN_FOOTPRINT (T) 7 2.9 

WETNESS CASFRI_DISTURB (T) 6 2.5 
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Stage Subset Covariate* F % 

WETLANDS CASFRI_DISTURB (T) 6 2.5 

WETxFOR CASFRI_DISTURB (T) 2 0.8 

WETxFOR Null 1 0.4 

WETNESS Null 1 0.4 

WETLANDS Null 1 0.4 

6. Road 

Distance 

WETNESS ROAD_DIST (L) 95 39.6 

WETLANDS Null 71 29.6 

WETNESS Null 41 17.1 

WETLANDS ROAD_DIST (L) 23 9.6 

WETxFOR ROAD_DIST l(L) 8 3.3 

WETxFOR Null 2 0.8 

7. Landscape 

Connectivity 

WETNESS Null 89 37.1 

WETLANDS Null 75 31.2 

WETNESS CONNECT (T) 47 19.6 

WETLANDS CONNECT (T) 19 7.9 

WETxFOR Null 10 4.2 

8. Protection 

Status 

WETNESS PROTECT (L) 134 55.8 

WETLANDS PROTECT (L) 93 38.8 

WETxFOR PROTECT (L) 10 4.2 

WETNESS Null 2 0.8 

WETLANDS Null 1 0.4 

*Covariates are labelled by buffer size, local (L) and territory (T). Column title 

abbreviations: F = Frequency, % = Percent selected. 
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Table 5.11: Selection frequencies of covariates at each model stage across three subsets of 240 

bootstrapped log-linear Poisson model runs for Olive-sided Flycatcher. Covariates 

are labelled by buffer size, local (L) and territory (T). 
 

Stage Subset Covariate F % 

1-2. Wetness & Forest Cover WETxFOR CASFRIxWET_PROP 218 90.8 
WETLANDS WET_LENGTH (T), CASFRI (T) 16 6.7 

WETNESS WET_LENGTH (T), CASFRI (T) 4 1.7 

WETNESS DTW_STD (T), CASFRI (T) 2 0.8 

3. Forest Structure WETxFOR HT_STD ter 116 48.3 WETxFOR CANCL_AV (L) 56 23.3 

WETxFOR CANCL_STD (L) 39 16.2 

WETLANDS CANCL_AV (L) 11 4.6 

WETxFOR HT_AV local 7 2.9 

WETNESS CANCL_AV  (L) 4 1.7 

WETLANDS HT_STD (T) 2 0.8 

WETLANDS CANCL_STD (L) 2 0.8 

WETNESS HT_STD (T) 1 0.4 

WETNESS CANCL_AV (T) 1 0.4 

WETLANDS HT_AV local 1 0.4 

WETxFOR COMPLEXITY (T) 171 71.2 

4. Landscape Complexity WETxFOR Null 47 19.6 WETLANDS COMPLEXITY (T) 12 5 

WETNESS COMPLEXITY (T) 4 1.7 

WETLANDS Null 4 1.7 

WETNESS Null 2 0.8 

WETxFOR FOOTPRINT (T) 218 90.8 

5. Disturbance WETLANDS FOOTPRINT ter 16 6.7 WETNESS FOOTPRINT (T) 6 2.5 

WETxFOR Null 211 87.9 

6. Road Distance WETLANDS Null 11 4.6 WETxFOR ROAD (L) 7 2.9 

WETNESS Null 5 2.1 

WETLANDS ROAD (L) 5 2.1 

WETNESS ROAD (L) 1 0.4 

WETxFOR CONNECT (T) 119 49.6 

7. Landscape Connectivity WETxFOR Null 99 41.2 WETLANDS CONNECT (T) 14 5.8 

WETNESS CONNECT (T) 6 2.5 

WETLANDS Null 2 0.8 

WETxFOR Null 149 62.1 

8. Protection Status WETxFOR PROTECT local 69 28.8 WETLANDS Null 9 3.8 

WETLANDS PROTECT (L) 7 2.9 

WETNESS PROTECT (L) 3 1.2 

WETNESS Null 3 1.2 

WETNESS Null 8 3.3 
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Table 5.12: Selection frequencies of covariates at model stages 1-2 within three subsets of 240 bootstrapped log-linear Poisson model 

runs for Rusty Blackbird. Covariates are labelled by buffer size, local (L) and territory (T). Column title abbreviations: 

F = Frequency, % = Percent selected. 

 

 

  WETLANDS WETNESS WETxFOR 

Stage Stage and Covariate % F Stage and Covariate % F Stage and Covariate % F 

Wet 1.0 Null 23.3 56 1.0 Null 0.4 1 1-2.0 Null 94.6 227 

1.1 WET_VEG (L) 64.6 155 1.1 DTW_PROP (L) 0.4 1 1-2.1 CASFRIxDTW_PROP 

(L) 

5.4 13 

1.2 WET_LENGTH 

(T) 

12.1 29 1.2 DTW_PROP (T) 5.8 14 1-2.2 CASFRIxDTW_PROP 

(T) 

0.0 0 

1.3 WETPROP (T) 0.0 0 1.3 DTW_STD (T) 93.3 22

4    

Cover 2.0 Null 5.8 14 2.0 Null 4.6 11    

2.1 CASFRI (L) 43.3 104 2.1 CASFRI (L) 22.9 55    

2.2 CASFRI (T) 50.8 122 2.2 CASFRI (T) 72.5 17

4       
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Table 5.13:  Selection frequencies of covariates at model stages 3-8 within three subsets 

of 240 bootstrapped log-linear Poisson model runs for Rusty Blackbird. 

Covariates are labelled by buffer size, local (L) and territory (T). Column 

title abbreviations: F = Frequency, % = Percent selected. 

 

   WETLANDS WETNESS WETxFOR 

Stage Stage and Covariate % F % F % F 

Struct 3.0 Null 8.8 21 14.2 34 2.1 5 

3.1 CANCL_AV (L) 26.7 64 20.0 48 30.4 73 

3.2 CANCL_AV (T) 2.5 6 1.7 4 10.8 26 

3.3 CANCL_STD (L) 20.8 50 19.2 46 1.7 4 

3.4 CANCL_AV (T) 30.0 72 30.8 74 43.8 105 

3.5 HT_AV (L) 0.8 2 1.3 3 7.9 19 

3.6 HT_STD (T) 10.4 25 12.9 31 3.3 8 

Complex 4.0 Null 56.3 135 79.2 190 58.8 141 

4.1 COMPLEXITY (T) 43.8 105 20.8 50 41.3 99 

Disturb 5.0 Null 1.3 3 0.8 2 1.7 4 

5.1 CASFRI_DIST (T) 7.9 19 4.6 11 4.2 10 

5.2 FOOTPRINT (T) 90.8 218 94.6 227 94.2 226 

Road 6.0 Null 70.0 168 44.2 106 70.8 170 

6.1 ROAD (L) 30.0 72 55.8 134 29.2 70 

Connect 7.0 Null 84.2 202 64.6 155 82.1 197 

7.1 CONNECT 15.8 38 35.4 85 17.9 43 

Protect 8.0 Null 1.3 3 1.3 3 0.8 2 

8.1 PROTECT (L) 98.8 237 98.8 237 99.2 238 
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Table 5.14:  Top ranked covariates explaining variation in density estimates for Rusty Blackbird (RUBL), Olive-sided Flycatcher 

(OSFL), and Canada Warbler (CAWA) for each model subset. Models represent the most-selected variable from each 

stage of the model-building process. Scale of variable is indicated as local (L) or territory (T). 

 

Species Subset Top ranked model 

RUBL WETLANDS Count ~ WET_VEG (L) + CASFRI (T) + CANCL_AV (T) + FOOTPRINT (T) + 

PROTECT (L) 

WETNESS Count ~ DTW_STD (T) + CASFRI (T) + CANCL_AV (T) + FOOTPRINT (T) + ROAD (L) 

+ PROTECT (L) 

WETxFOR Count ~ CANCL_AV (T)+ FOOTPRINT (T) + PROTECT (L) 

OSFL WETLANDS Count ~ WET_LENGTH (T) + CASFRI (T) + HT_STD (T) + COMPLEX (T) + 

FOOTPRINT (T) + CONNECT (T) 

WETNESS Count ~ DTW_STD (T) + CASFRI (T) + HT_STD (T) + COMPLEX (T) + FOOTPRINT 

(T) + CONNECT (T) 

WETxFOR Count ~ CASFRIxDTW_PROP (T) + HT_STD (T)+ COMPLEX (T) + FOOTPRINT (T) + 

CONNECT (T) 

CAWA WETLANDS Count ~ WET_LENGTH (T) + CASFRI (T) + CANCL_STD (L) + COMPLEX (T) + 

FOOTPRINT (T) + CONNECT (T) + PROTECT (L) 

WETNESS Count ~ DTW_STD (T) + CASFRI (T) + CANCL_STD (L) + COMPLEX (T) + 

FOOTPRINT (T) + CONNECT (T) + PROTECT (L) 

WETxFOR Count ~ CASFRIxDTWPROP (T) + CANCL_STD (L) + COMPLEX (T) + FOOTPRINT 

(T) + CONNECT ter + PROTECT (L) 
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Table 5.15:  Predicted population density and numbers of territorial males of Rusty 

Blackbird (RUBL), Olive-sided Flycatcher (OSFL), and Canada Warbler 

(CAWA) in 5 Maritime national parks. 

 

 
Park 

area 

(ha) 

Mean population density 

(territorial males/ha) 

Predicted Number of 

Territorial Males 

Park RUBL OSFL CAWA RUBL OSFL CAWA 

Kouchibou

guac 

24,199 <0.001 0.011 0.016 1 29 43 

Fundy 21,051 <0.001 0.013 0.031 0 43 105 

Cape 

Breton 

Highlands 

96,663 0.001 0.014 0.045 9 217 695 

Kejimkujik 

(Mainland) 

39,698 <0.001 0.011 0.038 1 67 242 

Kejimkujik 

(Seaside) 

2,095 <0.001 0.006 0.025 0 2 7 

Total 401, 506 <0.001 0.011 0.031 11 358 1092 
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Table 5.16:  Results of t-tests for predicted mean density (territorial males/ha) of Olive-

sided Flyatcher (OSFL) and Canada Warbler (CAWA) in national parks and 

surrounding randomly-selected areas of the same size in six ecoregions in 

New Brunswick and Nova Scotia. 

 

Ecoregion Species n 

Park Ecoregion 

P Mean  SD Mean SD 

121 OSFL 10 0.011 0.001 0.011 0.009 0.812 

CAWA 10 0.032 0.008 0.036 0.014 0.321 

122 OSFL 19 0.011 0.002 0.008 0.005 0.051 

CAWA 19 0.018 0.006 0.042 0.012 <0.001 

123 OSFL 7 0.014 0.003 0.007 0.003 <0.001 

CAWA 7 0.028 0.005 0.025 0.021 0.382 

124 OSFL 22 0.010 0.003 0.010 0.005 0.941 

CAWA 22 0.037 0.012 0.039 0.016 0.640 

128 OSFL 27 0.010 0.003 0.010 0.004 0.599 

CAWA 27 0.036 0.015 0.038 0.014 0.558 

129 OSFL 38 0.015 0.003 0.013 0.003 0.001 

CAWA 38 0.046 0.018 0.062 0.014 <0.001 
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Table 5.17: Selection frequencies of covariates at model stages 1-2 within three subsets of 240 bootstrapped log-linear Poisson 

model runs for Olive-sided Flycatcher. Covariates are labelled by buffer size, local (L) and territory (T). Column 

title abbreviations: F = Frequency, % = Percent selected. 

 

 

 

Stage 

WETLANDS WETNESS WETxFOR 

Stage and Covariate % F Stage and Covariate % F Stage and Covariate % F 

Wet 1.0 Null 0.0 0 1.0 Null 0.0 0 1-2.0 Null 0.0 0 

1.1 WET_VEG (L) 0.4 1 1.1 DTW_PROP (L) 1.7 4 1-2.1 CASFRIxDTW_PROP (L) 0.0 0 

1.2 WET_LENGTH (T) 99.6 239 1.2 DTW_PROP (T) 65.0 156 1-2.2 CASFRIxDTW_PROP (T) 100 240 

1.3 WETPROP (T) 0.0 0 1.3 DTW_STD (T) 33.3 80    

Cover 2.0 Null 0.0 0 2.0 Null 0.0 0    

2.1 CASFRI (L) 0.0 0 2.1 CASFRI (L) 0.0 0    

2.2 CASFRI (T) 100 240.0 2.2 CASFRI (T) 100.0 240       
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Table 5.18: Selection frequencies of covariates at model stages 3-8 within three subsets 

of 240 bootstrapped log-linear Poisson model runs for Olive-sided 

Flycatcher. Covariates are labelled by buffer size, local (L) and territory (T). 

Column title abbreviations: F = Frequency, % = Percent selected. 

 

   WETLANDS WETNESS WETxFOR 

Stage Stage and Covariate % F % F % F 

Struct 3.0 Null 0.4 1 0.0 0 0.0 0 

3.1 CANCL_AV (L) 30.8 74 43.3 104 26.3 63 

3.2 CANCL_AV (T) 0.0 0 0.4 1 0.0 0 

3.3 CANCL_STD (L) 30.8 74 9.2 22 19.2 46 

3.4 CANCL_AV (T) 0.0 0 0.4 1 0.0 0 

3.5 HT_AV (L) 10.4 25 1.3 3 3.3 8 

3.6 HT_STD (T) 27.5 66 45.4 109 51.3 123 

Complex 4.0 Null 20.0 48 22.5 54 20.8 50 

4.1 COMPLEXITY (T) 80.0 192 77.5 186 79.2 190 

Disturb 5.0 Null 0.0 0 0.0 0 0.0 0 

5.1 CASFRI_DIST (T) 0.0 0 0.0 0 0.0 0 

5.2 FOOTPRINT (T) 100.0 240 100.0 240 100.0 240 

Road 6.0 Null 91.7 220 85.8 206 96.3 231 

6.1 ROAD (L) 8.3 20 14.2 34 3.8 9 

Connect 7.0 Null 10.8 26 11.3 27 45.4 109 

7.1 CONNECT 89.2 214 88.8 213 54.6 131 

Protect 8.0 Null 55.0 132 53.8 129 67.9 163 

8.1 PROTECT (L) 45.0 108 46.3 111 32.1 77 
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Table 5.19 Selection frequencies of covariates at model stages 1-2 within three subsets of 240 bootstrapped log-linear Poisson model 

runs for Canada Warbler. Covariates are labelled by buffer size, local (L) and territory (T). Column title abbreviations: 

F = Frequency, % = Percent selected. 

 

  WETLANDS WETNESS WETxFOR 

Stage Stage and Covariate % F Stage and Covariate % F Stage and Covariate % F 

Wet 1.0 Null 2.1 5 1.0 Null 0.0 0 1-2.0 Null 2.9 7 

1.1 WET_VEG (L) 26.7 64 1.1 DTW_PROP (L) 0.0 0 1-2.1 CASFRIxDTW_PROP (L) 11.3 27 

1.2 WET_LENGTH ter 71.3 171 1.2 DTW_PROP (T) 0.0 0 1-2.2 CASFRIxDTW_PROP t(T) 85.8 206 

1.3 WETPROP (T) 0.0 0 1.3 DTW_STD (T) 100.0 240    

Cover 2.0 Null 0.4 1 2.0 Null 0.4 1    

2.1 CASFRI (L) 31.3 75 2.1 CASFRI (L) 21.7 52    

2.2 CASFRI (T) 68.3 164 2.2 CASFRI (T) 77.9 187       
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Table 5.20:  Selection frequencies of covariates at each model stage across three subsets 

of 240 bootstrapped log-linear Poisson model runs for CAWA. Covariates 

are labelled by buffer size, local (L) and territory (T). Column title 

abbreviations: F = Frequency, % = Percent selected. 

 

Stage Subset Covariate F % 

1-2. Wetness & Forest Cover WETNESS DTW_STD (T), CASFRI (T) 185 77.1 

WETNESS DTW_STD (T), CASFRI (L) 52 21.7 

WETxFOR CASFRIxDTW_PROP (T) 2 0.8 

WETNESS DTW_STD (T), Null 1 0.4 

3. Forest Structure WETNESS CANCL_STD (L) 144 60 

WETNESS HT_STD (T) 68 28.3 

WETNESS CANCL_AV (T) 12 5 

WETNESS CANCL_AV (L) 8 3.3 

WETNESS HT_AV (L) 6 2.5 

WETxFOR CANCL_STD (L) 2 0.8 

4. Landscape Complexity WETNESS COMPLEXITY (T) 230 95.8 

WETNESS Null 8 3.3 

WETxFOR Null 1 0.4 

WETxFOR COMPLEXITY (T) 1 0.4 

5. Disturbance WETNESS FOOTPRINT (T) 226 94.2 

WETNESS CASFRI_DIST (T) 12 5 

WETxFOR FOOTPRINT (T) 2 0.8 

6. Road Distance WETNESS Null 203 84.6 

WETNESS ROAD (L) 35 14.6 

WETxFOR Null 2 0.8 

7. Landscape Connectivity WETNESS CONNECT (T) 238 99.2 

WETxFOR CONNECT (T) 2 0.8 

8. Protection Status WETNESS Null 128 53.3 

WETNESS PROTECT (L) 110 45.8 

WETxFOR Null 1 0.4 

WETxFOR PROTECT (L) 1 0.4 
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Figure 5.1:  Location of all Nova Scotia and New Brunswick point counts in the Boreal 

Avian Modelling Project database. Abundance data from these locations 

were used to generate bird habitat models for the national parks shown on 

the map.  
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Figure 5.2:  Areas with a depth to water table less than or equal to 1 metre are labelled 

as wetlands. For comparison of predicted avian population density between 

parks and their surrounding ecoregions, grid cells (gray squares) were 

randomly selected from the study area. Data source: Forest Watershed 

Research Center, University of New Brunswick; NS Department of Natural 

Resources. 
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Figure 5.3:  Map of study areas in relation to classification of landscape complexity for 

the Northern Appalachian/Acadian ecoregions. For comparison of 

population density between parks and their surrounding ecoregions, grid 

cells (gray squares) were randomly selected from the study area. Data 

source: The Nature Conservancy; Conservation Biology Institute: Data 

Basin. 
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Figure 5.4:  Map of study areas in relation to local connectedness within New 

Brunswick and Nova Scotia. Grid cells (gray squares) were randomly 

selected from outside of protected areas. Data source: Government of 

Canada; Natural Resources Canada; Earth Sciences Sector; Canada Centre 

for Mapping and Earth Observation. 
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Figure 5.5:  Ecoregions of New Brunswick and Nova Scotia. Gray squares show 

randomly selected non-park replicates used for comparison with the 

corresponding national park within the same ecoregion. Ecoregions data 

source: CGDI National Frameworks Data. 
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Figure 5.6:  Selection paths of variables best explaining variation in density estimation 

of RUBL, OSFL, and CAWA in New Brunswick and Nova Scotia based on 

the branching hierarchy model building process.  Results for three model 

subsets (A – WETLANDS, B – WETNESS, C – WETxFOR) represent 

selection frequencies from 240 bootstrap iterations. Horizontal lines show 

each model stage, and numbers indicate individual covariates. Shade and 

thickness of line are proportional to selection frequency, with larger and 

lighter lines indicating higher selection frequencies. 
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Figure 5.7:  Relationship of predicted density of males per hectare to forest cover at two scales for RUBL (WETNESS model subset), OSFL 

(WETxFOR model subset), and CAWA (WETNESS model subset). Upper panels show the local scale (50m buffer for RUBL and 

CAWA, 100m for OSFL) and lower panels show territory scale (250 m buffer).  
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Figure 5.8:  Relationship of density of males per hectare to forest cover and proportion 

of buffer classified as wet (depth to water table <1 m) at the territory scale 

(250 m) for OSFL. Values on the X axis are standardized. 
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Figure 5.9: Relationship of predicted density of males per hectare to standard deviation of depth to water table at the 

territory scale (250 m) for RUBL (WETNESS model subset) and CAWA (WETNESS model subset). 

Values on the X axis are standardized. 
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Figure 5.10: Relationship of predicted density of males per hectare to mean and standard deviation of canopy height at two scales 

for RUBL (WETNESS model subset), OSFL (WETxFOR model subset), and CAWA (WETNESS model subset). 

Upper panels show mean canopy height at the local scale (50m buffer for RUBL and CAWA, 100m for OSFL) and 

lower panels show standard deviation of canopy height at the territory scale (250m buffer). Values on the X axis are 

standardized. 
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Figure 5.11:  Relationship of predicted density of males per hectare to mean and standard deviation of canopy height at two scales for RUBL 

(WETNESS model subset), OSFL (WETxFOR model subset), and CAWA (WETNESS model subset). Upper panels show mean 

canopy height at the local scale (50m buffer for RUBL and CAWA, 100m for OSFL) and lower panels show standard deviation of 

canopy height at the territory scale (250m buffer). Values on the X axis are standardized. 
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Figure 5.12:  Relationship of density of males per hectare to landscape complexity (-1 = below mean, 0 = mean, 1 = above mean) at the territory 

scale (250 m buffer) for RUBL (WETNESS model subset), OSFL (WETxFOR model subset), and CAWA (WETNESS model 

subset). 

 

Figure 5.13: Relationship of density of males per hectare to human footprint index at the territory scale (250 m) for RUBL (WETNESS model 

subset), OSFL (WETxFOR model subset), and CAWA (WETNESS model subset). Values on the X axis are standardized. 
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Figure 5.14: Relationship of density of males per hectare to road condition (0 = point count off road, 1 = point count adjacent to road) for RUBL 

(WETNESS model subset), OSFL (WETxFOR model subset), and CAWA (WETNESS model subset).  

 

 

Figure 5.15: Relationship of density of males per hectare to local connectedness index at the territory scale (250 m) for RUBL (WETNESS 

model subset), OSFL (WETxFOR model subset), and CAWA (WETNESS model subset). Values on the X axis are standardized. 



 

 

 

1
7
3
 

 

 

Figure 5.16: Relationship of density of males per hectare to disturbed area within the territory buffer (250 m) for RUBL (WETNESS model 

subset), OSFL (WETxFOR model subset), and CAWA (WETNESS model subset). 
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Figure 5.17: Relationship of density of males per hectare to site protection status at the point count location (0 = unprotected, 1 = 

protected) for RUBL (WETNESS model subset), OSFL (WETxFOR model subset), and CAWA (WETNESS model 

subset). Values on the X axis are standardized. 
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Figure 5.18: Relationship of density of males per hectare to proportion of depth to 

water table classified as <= 1 in buffers for OSFL and CAWA at the local 

(50 m for CAWA, 100 m for OSFL, left panels) and territory scale (250 

m, right panels). Values on the X axis are standardized. 
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Figure 5.19: Predicted mean density of territorial males/ha (left panels) and coefficient 

of variation (right panels) for RUBL, OSFL, and CAWA in 

Kouchibouguac National Park.
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Figure 5.20: Predicted mean density of territorial males/ha (left panels) and coefficient 

of variation (right panels) for RUBL, OSFL, and CAWA in Fundy 

National Park. 
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Figure 5.21: Predicted mean density of territorial males/ha (left panels) and coefficient 

of variation (right panels) for RUBL, OSFL, and CAWA in Cape Breton 

Highlands National Park. 
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Figure 5.22: Predicted mean density of territorial males/ha (left panels) and coefficient 

of variation (right panels) for RUBL, OSFL, and CAWA in Kejimkujik 

Seaside National Park. 
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Figure 5.23: Predicted mean density of territorial males/ha (left panels) and coefficient 

of variation (right panels) for RUBL, OSFL, and CAWA in Kejimkujik 

Mainland National Park. 
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Figure 5.24: Predicted mean density of OSFL and CAWA in national parks and 

surrounding randomly-selected areas of the same size in six ecoregions in 

New Brunswick and Nova Scotia.
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CHAPTER 6 CONCLUSION 

 

6.1. SPEAKING THE FORESTERS’ LANGUAGE 

As a discipline, conservation ecology is forced to walk a fine line, straddling the realms of 

the ideal and the practical.  It is almost certainly true that existing protected areas alone 

will be insufficient to conserve populations of the Rusty Blackbird, Olive-sided Flycatcher, 

and Canada Warbler in the Maritimes. Although Nova Scotia recently increased its 

protected areas holdings to 13% of the total landmass (Province of Nova Scotia 2013), it 

unrealistic to expect that protected areas will undergo significant expansions in the near 

future. In this context, it is imperative that habitat be protected in managed landscapes, and 

this thesis endeavoured to provide tools to facilitate that end. 

 

The tools and methods of measurement I used for my fine-scale analyses—FEC, prism 

plots, canopy cover from densiometer readings, among others—were deliberately chosen 

as they are tools of the trade in commercial forestry settings (Mitchell et al. n.d.; Korhonen 

et al. 2006). Vegetation measurements for these landbird species in other jurisdictions have 

used different methods, such as fixed radius plots (Hunt et al. 2015), and trees were 

quantified in forestry terms rather than through an understanding of bird biology (e.g. perch 

trees, Hallworth et al. 2008). These differences in vegetation sampling may limit direct 

comparability of Nova Scotia habitat results with others across the range. However, when 

making methods decisions, I had to consider a trade-off: maximizing the generalizability 

of captured ecological data, or, providing vegetation information that is immediately 

transferable to a forester’s existing skill set. Faced with this difficult choice, and given the 

imperiled state of these species, I chose the latter.  

 

The habitat associations I measured, containing species-specific vegetation structure and 

cover knowledge for three landbird SAR, are already being used on the ground by 

landowners trained during a concurrent public education campaign (Mersey-Tobeatic 

Research Insitute & Parks Canada 2012). Although woodlot owners and timber cruisers 

may not have the experience to identify these birds to species, they have the skills to 
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identify key features of their habitat (such as FEC classification, sphagnum mosses, tree 

species and height, and common fern species).  

 

As discussed in CHAPTER 2, present cutting regulations are likely inadequate to retain 

wet forest habitat features for these species. These features, including mud puddles, open 

water, nesting trees, shrubs for nesting and cover, depth to water table across the site, forest 

composition and height structure, canopy closure, complex ground structure, and particular 

ecosites, could be removed by harvesting or compromised by the impact of machinery on 

soils. As anthropogenic effects have a negative impact on population density (CHAPTER 

5), where possible, areas large enough to include one or more complete bird territories 

should be excluded from cutting. Specifically for conservation of the Rusty Blackbird, 

Olive-sided Flycatcher, and Canada Warbler in managed lands, I propose three 

management prescriptions in Nova Scotia: 

 

1. During timber cruises and woodlot surveys, managers should be aware of the 

specific habitat features associated with and ecosites occupied by each species 

(CHAPTER 2, CHAPTER 3). When encountering these conditions, managers 

should have the stand surveyed for presence of these species by a wildlife expert 

before cutting. This is legally required, as harming the nest of species listed in the 

Species at Risk Act is considered an offence (Government of Canada 2011). 

 

2. Cutting should be limited, or restricted entirely, in ecosites 4, 8, and 12. 

 

3. Buffers around wet forest should be extended to 100 m, at minimum, to avoid 

destruction of foraging and perching sites within territories.  

 

At the landscape scale, conservation of these species will require the construction of SDMs 

outside of national parks to direct regional forest management and protected areas 

planning. This work is already ongoing, as I am collaborating with Shannon Bale (MES 

candidate, Dalhousie University), BAM, and other scientific contractors to develop 
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landscape-scale SDMs for these species, based on methods developed in this thesis 

(CHAPTER 4; CHAPTER 5).  

 

As I faced trade-offs between using scientific methods that best reflected the bird’s 

understanding of habitat with practical techniques based on human management tools when 

measuring fine-scale habitat variables, so did I face similar choices when choosing a spatial 

dataset for modeling population density. After realizing that SDMs chosen for management 

scenarios were often misreported or outdated (CHAPTER 4), I developed an easily-

interpretable guide for SDM selection targeted specifically at non-academics. Although 

analyses in Chapter 3 revealed that FRI data can suffer from low accuracy, I used a similar 

dataset (CASFRI) as a fundamental part of SDMs for these species (CHAPTER 5). 

Representing tree cover in another way, such as from satellite data or LiDAR, may have 

increased accuracy of reference data and better captured habitat features relevant to these 

species (Goetz et al. 2007, 2010; Vogeler et al. 2013). However, FRIs are the standard 

spatial layers used by governments and foresters when engaging in management planning. 

Thus, using FRI as a foundational part of my model made it easily portable to other 

jurisdictions or institutions who may wish to use it for management planning. 

 

Although landscape-level planning and stand-level management prescriptions are 

important, these alone will not be enough to effectively conserve these SAR. It has been 

hypothesized for two of these three species that harvested landscapes pose an ecological 

trap (Powell et al. 2010b; Robertson & Hutto 2013), and this hypothesis needs to be tested 

in Atlantic Canada. This will require intensive field study of breeding pairs to measure nest 

success. Furthermore, the present study can make no inferences about the effects of habitat 

configuration on the occurrence of three focal species. Some of these species may benefit 

from specific configurations, e.g. large wet areas patches that can sustain clusters of 

territories, but these hypotheses require testing. This could be studied by monitoring nest 

success or conceptual modelling (see Villard & Metzger 2014), and should also be tested 

for varying management intensities. In conjunction with experimental forestry operations 

to conserve habitat, long-term population monitoring studies or growth models (e.g. Haché 

et al. 2016) will be essential to facilitate adaptive management for species recovery. 
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6.2. THE PROBLEM OF HABITAT SATURATION 

 

Although habitat loss is the leading cause of species decline (Kerr & Deguise 2004), this 

is not true for all species in all locations. Many of the most severe factors implicated in the 

decline of these SAR cannot be solved by forest management. These include habitat 

conversion on the wintering grounds (Dahl 1990; Hamel et al. 2008; Greenberg et al. 2011; 

DeLeon 2012), climate change (Klein et al. 2005; McClure et al. 2012), parasite infections 

(Barnard et al. 2010), mercury contamination (Edmonds et al. 2010), and predation (Savard 

et al. 2011). Massive changes in beaver populations since pre-European settlement have 

affected distribution and availability of wetlands, streams, and wet forests (Naiman et al. 

1988), although the impacts for on habitat for these species is unknown. 

At least for the Rusty Blackbird, it is thought that habitat is unsaturated in the eastern 

portion of the breeding range (Harper 2011; Scarl 2013). Given the rapid decline in 

population, this is likely true for the Olive-sided Flycatcher and Canada Warbler as well. 

In this case, it is essential to understand habitat quality as well as availability, which can 

only be done through studies measuring fecundity, nest success, and potentially migratory 

connectivity (Hobson et al. 2010; Matsuoka et al. 2010a). Such knowledge is urgently 

needed in particular for these Atlantic populations, which may be vulnerable to rapid range 

contraction (Greenberg et al. 2011). Large swaths of available but unoccupied habitat may 

be due to the allee effect, whereby low-density populations are unable to sustain 

themselves. This has been hypothesized for the Rusty Blackbird, where wintering habitat 

along the Atlantic Coastal Plain is restricted, and corresponding declines in breeding 

grounds for this flyway, the Maritime provinces and New England, have been substantial 

(Greenberg et al. 2011). Furthermore, the effects of habitat fragmentation are not known 

on these species. 

Robust scientific studies can tell us much about the ecology of these species, and the threats 

facing them, and certainly more research is direly needed. However, as emphasized through 

this thesis, scientific research ought to be measured with practicality when addressing 

species at risk. I have endeavoured to bring together the discipline of conservation ecology 

with traditional forestry practices to develop ecologically-grounded management tools 
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meant for immediate transfer to conservation practitioners. Conserving the Rusty 

Blackbird, Olive-sided Flycatcher, and Canada Warbler in Atlantic Canada will take 

dedicated collaboration between scientists, forest managers, government bodies, and the 

private land-owners. With luck and will, the tools developed in this thesis will be of use to 

facilitate the recovery of these landbird SAR from the Maritimes. 
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