


# A Multi-Scale Analysis of Rusty Blackbird Habitat Selection and Nest Survival in Northeastern Industrial Forests

Shannon Buckley Luepold, Thomas Hodgman, Stacy McNulty, Jonathan Cohen and Carol Foss

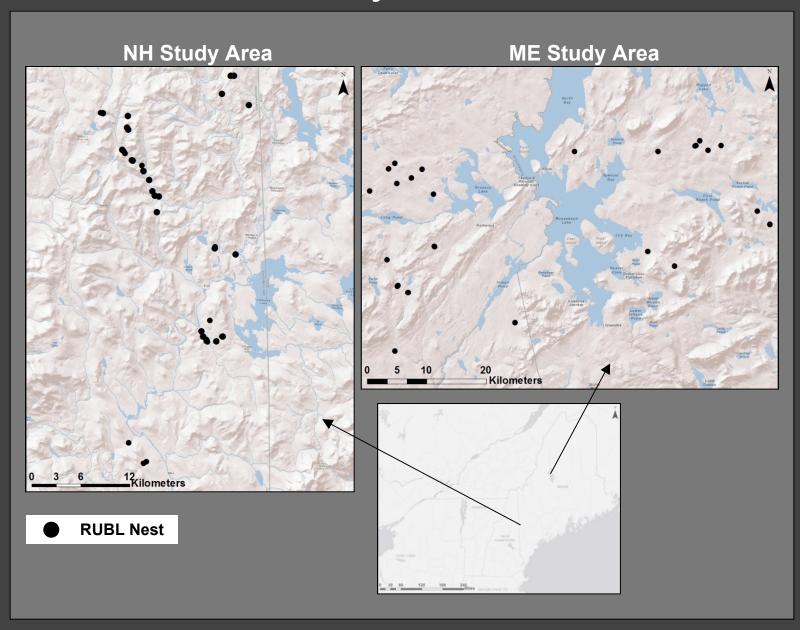
## Background:

- Regenerating clearcuts as "ecological traps"
- Predators and associated habitat variables unknown
- Hypothesized to be red squirrels, but no evidence

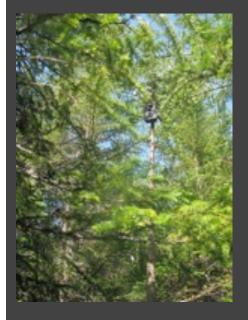







## Objectives

- Examine the effect of different habitat features on habitat selection and nest survival at multiple spatial scales
- Identify predators of RUBL nests
- Explore the relationship between cone cycles, predator populations and nest predation





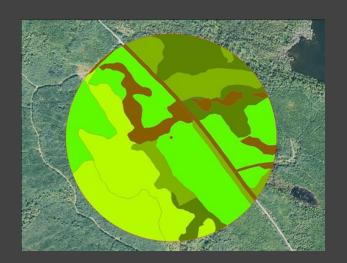

## Study Areas



#### Field Methods



- Cameras < 1 to 3 m from nests
- Habitat measurements
- Squirrel surveys








## Home Range Scale Habitat Measurements

- Data on stand area, species composition, etc. from landowners
- Wetland data from National Wetland Inventory (NWI)
   Database
- Used ArcGIS v10 to determine percent cover of different forest and wetland types within 500-m radius of nests, distance to nearest road





## Statistical Analyses

- Nest Habitat Selection
  - Logistic regression in R
  - 2 Spatial scales:
    - Nest Patch Scale (5 m)
    - Home Range Scale (500 m)
- Nest Survival:
  - Program MARK
  - 2 Spatial scales:
    - Nest Patch Scale (5 m)
    - Home Range Scale (500 m)
- Comparison of Cone/Squirrel Abundance:
  - Program R
    - Mann-Whitney U Test
    - McNemar's Test

#### Results: Nest Habitat Selection

72 nests total: ME (29)
 and NH (43), 2011-2012

• 63 nests in harvested areas, 9 in unharvested wetlands





#### Results: Habitat Selection

#### **Nest Patch Scale**



| Model*                            | K | $\triangle AIC_c$ | W <sub>i</sub> | L    |
|-----------------------------------|---|-------------------|----------------|------|
| SFBAless10+Canopy+Site            | 3 | 0                 | 0.63           | 1.00 |
| SFBAless10+Canopy+Site+AlderStems | 4 | 1.50              | 0.30           | 0.47 |
| SFBAless10+Site                   | 2 | 5.47              | 0.04           | 0.06 |
| SFBAless10+Site+AlderStems        | 3 | 7.64              | 0.01           | 0.02 |
| SFBAless10*Site                   | 3 | 7.65              | 0.01           | 0.02 |

<sup>\*</sup> AIC<sub>c</sub> value of top model = 29.44, n = 72

SFBAless10: **↑** 5m²/ha **→ ↑** 74±32%

Canopy: ↑ 10% → ↓ 43±15%

#### Results: Habitat Selection

Home Range Scale



| Model*                 | K | $\triangle AIC_c$ | W <sub>i</sub> | L    |
|------------------------|---|-------------------|----------------|------|
| YoungSoft+TotWet+Site  | 4 | 0                 | 0.69           | 1.00 |
| YoungSoft+PFO_PSS+Site | 4 | 2.08              | 0.24           | 0.35 |
| PoleSoft+TotWet        | 3 | 6.83              | 0.02           | 0.03 |
| PoleSoft+TotWet+Site   | 4 | 7.70              | 0.01           | 0.02 |
| PoleSoft+PFO_PSS       | 3 | 8.85              | 0.01           | 0.01 |
| YoungSoft+TotWet       | 3 | 9.52              | 0.01           | 0.01 |

<sup>\*</sup> AIC<sub>c</sub> of top model = 136.04, n = 50

YoungSoft: **↑**10% **→ ↑**41±15%

TotWet: ↑ 10% → ↑114±43%



#### Results: Nest Habitat Selection

- Different factors driving selection at different spatial scales
  - Foraging requirements (wetlands) at home range scale
  - Nest safety (dense conifers) at nest patch scale





#### Results: Nest Survival


#### Nest Patch Scale:



| Model*         | K | ∆ <b>AIC</b> <sub>c</sub> | W <sub>i</sub> | Dev     |
|----------------|---|---------------------------|----------------|---------|
| BATotal        | 2 | 0                         | 0.230          | 131.662 |
| BATotal+Year   | 3 | 0.424                     | 0.186          | 130.070 |
| BATotal+Cut    | 3 | 1.263                     | 0.123          | 131.430 |
| BATotal+Site   | 3 | 1.784                     | 0.094          | 129.996 |
| BATotal+RESQ   | 3 | 1.937                     | 0.087          | 131.584 |
| BATotalxCut    | 4 | 2.371                     | 0.070          | 130.000 |
| Year           | 2 | 4.175                     | 0.029          | 135.837 |
| AlderTree+Year | 3 | 4.548                     | 0.024          | 134.194 |
| AlderTree+Site | 3 | 4.604                     | 0.023          | 134.251 |
| AlderTree      | 2 | 5.849                     | 0.012          | 137.511 |
| Null           | 1 | 5.864                     | 0.012          | 139.537 |

<sup>\*</sup> AIC<sub>c</sub> value of best model = 135.22, n = 65

#### Results: Effect of Total Basal Area



## Results: Nest Survival

#### Home Range Scale




| Model                 | K | ∆ <b>AIC</b> <sub>c</sub> | W <sub>i</sub> | Dev     |
|-----------------------|---|---------------------------|----------------|---------|
| RdDist+Yr+RdDistxYr   | 4 | 0                         | 0.858          | 95.200  |
| WetDist+Yr+WetDistxYr | 4 | 6.864                     | 0.028          | 102.064 |
| Year                  | 2 | 8.288                     | 0.014          | 107.535 |
| TotWet+Year           | 3 | 8.853                     | 0.010          | 106.080 |
| WetDist+Year          | 3 | 9.068                     | 0.009          | 106.295 |
| TotWet                | 2 | 9.743                     | 0.007          | 108.990 |
| YoungSoft+Year        | 3 | 9.782                     | 0.006          | 107.009 |
| MatSoft+Year          | 3 | 9.917                     | 0.006          | 107.144 |
| RdDist+Year           | 3 | 10.066                    | 0.006          | 107.293 |
| TotWet+Yr+TotWetxYr   | 4 | 10.091                    | 0.006          | 105.291 |
| Null                  | 1 | 10.137                    | 0.005          | 111.398 |

<sup>\*</sup> AIC<sub>c</sub> value of best model = 103.267, n = 50

## Management Implications

- Roads
- Pre-commercial thinning?



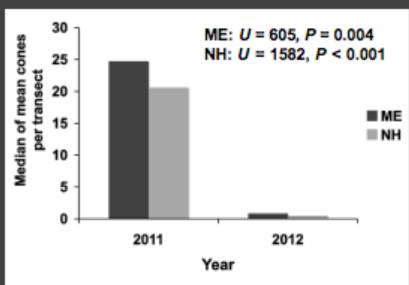


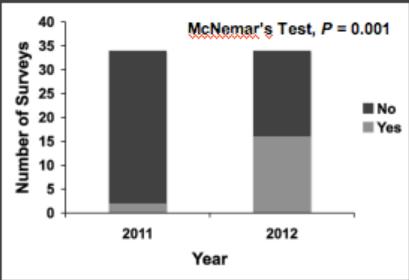


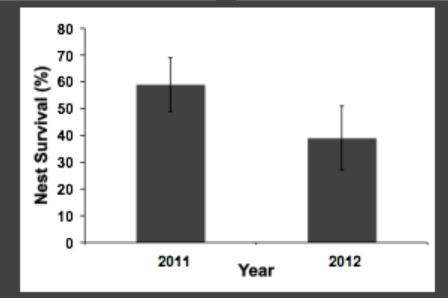
#### Results: Nest Survival and Predators

- Monitored 29 nests with cameras
- 8 predation events documented, 4 predator species identified: white-tailed deer, sharp-shinned hawk, blue jay and red squirrel
- Red squirrels most frequent predator (4 predations), but only in 2012

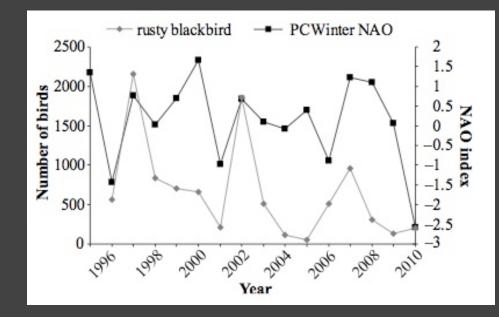


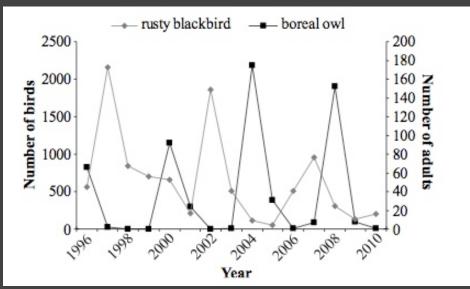



## Results: Cones, Squirrels and Nest Survival








## Cyclical Patterns in Rusty Blackbirds







#### Conclusions:

- Different habitat features important at different spatial scales - importance of landscape mosaic
- Relationship between RUBL ecology and timber harvesting complex
- Red squirrels important nest predators, but not every year - possible influence of masting/fluctuating predator populations



#### References:

- Powell, L., T. P. Hodgman, W. E. Glanz, J. D. Osenton and C. M. Fisher. Nest-site selection and nest survival of the Rusty Blackbird: Does timber management adjacent to wetlands create ecological traps? Condor 112:800-809.
- Savard, J-P. L., M. Cousineau, and B. Drolet. 2011.
   Exploratory analysis of correlates of the abundance of rusty blackbirds (*Euphagus carolinus*) during fall migration. Ecoscience 18:402-408.

## Acknowledgements:

- Academic, logistical and moral support:
  - Stacy McNulty
  - Tom Hodgman
  - Carol Foss
  - Luke Powell
  - Patti Newell
  - Jonathan Cohen
  - Stefan Lüpold
- Field Technicians:
  - Linnea D'Amico
  - Sara Prussing
  - Joe Roy
- Funding:
  - Edna Bailey Sussman Foundation
  - Maine Outdoor Heritage Fund
  - US Fish and Wildlife Service
  - Garden Club of America

