The distribution of Rusty Blackbirds on their wintering grounds: Potential hotpots and habitat associations

Brian S. Evans, Powell, L.L., and Greenberg, R.

AOU 2014

Overview

 Goal: Predict hot spots for large flocks of Rusty
 Blackbirds

- 2) Habitat distribution modeling: The pros and cons of the MaxEnt approach
- 3) Methods (Model development)
- 4) Methods (output) and results

Research questions

- 1) How does prevalence vary by flock size?
- 2) Do different flock sizes represent different ecological niches?
- 3) Which environmental variables best predict the distribution of Rusty Blackbird flocks?
- 4) Did the Rusty Blackbird Blitz provide improved predictions of habitat suitability?

Methods: Distribution modeling overview

- MaxEnt or occupancy models? The trouble with 0's
- MaxEnt limitations:
 - Models distribution in realized niche space (hot spots?)
 - Models tend to be overfit
 - Interaction and quadratic terms
 - Models may be heavily influenced by sampling bias
 - Observations are spatially autocorrelated

Model building: observational data

- Data collected from RUBL Blitz and eBird
- Subset to Blitz months (Jan-Feb) and flock size classes.
- Extracted to 4 km resolution grid

Model building: Environmental data

- Land cover: US GAP Analysis Project, 30 m resolution
 - Reclassified into classes considered predictive of RUBL distribution
 - Aggregated to a grain size of 4 km
- Climate: precipitation (ppt) and minimum temperature (tmin): US PRISM, 4 km resolution

Model building/processing example: Black Belt Alabama

Model building: "Overcoming" bias and model overfitting

Sampling bias:

Background points
 generated from non-RUBL
 observations with eBird
 from Jan-Feb of sampled
 years.

Model overfitting

- Interactions and quadratic terms added individually prior to modeling
- AIC used for selection of beta parameter

Model building

Does prevalence of suitable habitats vary by flock size?

Does prevalence of suitable habitats vary by flock size?

Does prevalence of suitable habitats vary by flock size?

Do different flock sizes occupy different realized niche space?

$$I(p_{\rm X},\,p_{\rm Y}) = 1 - \frac{1}{2} \sqrt{\sum_i \left(\sqrt{p_{{\rm X},i}} - \sqrt{p_{{\rm Y},i}}\right)^2}.$$
 (Warren 2008)

Which environmental variables contribute the most to habitat suitability for individual, small flock, and large flock observations?

Individual observations

VariablePercent contributionTmin69.3Floodplain7.9Row crop5.2PPT5.0Pasture2.4

Small flock observations

Variable	Percent contribution
Tmin	62.6
Floodplain	12
PPT	5.9
Row crop	5.4
Pasture	3.6

Large flock observations

Variable	Percent contribution
Tmin	53.4
Floodplain	22.6
Row crop	5.1
PPT	4.8
Pasture	2.8

Which environmental variables contribute the most to habitat suitability for individual, small flock, and large flock observations?

Which environmental variables contribute the most to habitat suitability for individual, small flock, and large flock observations?

Do Blitz data improve suitability estimates? Point biserial correlation

Pearson correlation between model predictions and presence (1) and background data (0)

Conclusions

- 1) Prevalence decreases with increasing flock size but was similar for small and large flocks.
- 2) Realized ecological niches differed across flock size classes.
- 3) Minimum temperature and floodplain forest were most predictive of the RUBL distributions across flock size classes.
- 4) For large flock and individual sightings, Blitz data improved suitability estimates.

