Understanding Mercury in Rusty Blackbirds

October 2012 --- Rusty Blackbird Workshop

Sam Edmonds, Nelson O'Driscoll,
David Evers, Kirk Hillier, and Jon Atwood
Acadia University
Biodiversity Research Institute

Why worry about mercury?

- Released from both natural and human sources
- People are a major contributor to global emissions
- Human contribution has increased environmental and wildlife Hg concentrations
- Mercury is converted to toxic methyl-mercury (MeHg) primarily by sulphur- and ironreducing bacteria
- MeHg biomagnifies and is highly toxic

Graphics ian Photop Becamic freheat ১০০০ (black is presseral source of mercury (Dietz et al. 2011). Current fur-Hg about (তিমাণুক একা ক্ষেত্ৰ কিছিল বিশ্ব কিছিল) industrial concentrations

Potential for impacts on individuals and population

Effects of Hg on birds include:

- Decreased reproductive success/productivity
- Damage to nervous, endocrine, immune systems; genotoxicant
- In general, environmental Hg exposure is not acutely lethal on adults, but may result in sub-lethal effects
- Expect greatest effects on developing young

Potential for impacts on individuals and population: Establishing an estimated effects level for blood/feathers

- Songbirds appear to be more sensitive to Hg during embryo development than more traditionally studied waterfowl
- Expect the greatest potential for effects to occur during development – probably postfledgling
- Decreased nesting success with increased Hg burdens (Jackson et al. 2011. Provides estimated effect levels for songbird blood, tail/body feathers, and eggs)

FIG. 5. The relationship between MCESTIMATE-modeled Carolina Wren nest survival and female blood mercury concentration for nests found in 2010 in Virgina. (A) Predicted Carolina Wren nest success over their 30-day nest cycle in relation to female blood mercury concentration when other covariates were held constant (date = 24 May, nest cavity = natural). Error bars indicate SE. Dotted portion of the line indicates model extrapolation past observed female blood mercury concentrations. (B) Percent reduction in nest survival (from nest survival at 0 µg g⁻¹) in relation to female blood mercury concentrations. Blood mercury concentrations associated with 10% increments of reduction in nest success are shown.

Jackson et al. 2011

Objectives

- Assess Hg concentrations in Rusty Blackbirds across their range; Where/when is Hg of greatest concern?
- Compare mercury in Rusty
 Blackbirds with co-occurring species
- Assess long-term trends in mercury in Rusty Blackbirds
- Determine likelihood of Hg as a contributing factor to the population decline
- Determine mechanisms promoting bioaccumulation of Hg in areas with elevated tissue-Hg concentrations

Breeding female Rusty Blackbird

Methods

Methods (field):

- Blood/feathers non-lethally collected across range for total-Hg by numerous researchers (2005 to 2012)
- Collected water for MeHg, THg, DOC analysis (2009, 19 sites in Northeast)
- Simultaneously measured pH, redox potential, DO₂, conductivity, temperature (YSI Multi-probe)
- Invertebrates collected for MeHg and THg analysis
- Body feathers collected from museum specimens (Harvard Museum of Comparative Zoology) for MeHg

Methods (lab):

- Bird blood/feather THg analysis by AA
- Invertebrate and body feathers analyzed for MeHg/Hg(II) analyzed after extraction by KOH/MeOH by GC-AFS
- Water THg analyzed after filtering, oxidation to Hg(II) by BrCl, reduction by SnCl2, and purge onto gold traps. Analyzed by AFS
- Water MeHg analyzed after distillation, and purge & trap, by GC-AFS

Female Rusty Blackbird having blood drawn for Hg analysis

Rusty Blackbird blood-mercury concentrations

Blood represents recent uptake/local exposure

- NE Breeding 6x > Winter
- Northeast 3x > Alaska

Significant differences observed between all regions and the Northeast (p < 0.001)

Edmonds et al. 2010. The Condor, v.112

Rusty Blackbird feather-mercury concentrations

Feathers roughly represent long-term Hg accumulation

Sequester Hg during growth (post-breeding)

- Feathers from wintering birds suggest similar Hg exposure across breeding range
- But...Northeast at least 3x other regions

Northeast significantly different from the other 4 regions (p < 0.001), the other 4 regions were similar (p > 0.05)

Rusty Blackbird blood-mercury concentrations

13% of the NE adults exceed 20% threshold

Blood represents recent uptake/local exposure

- NE Breeding 6x> Winter
- Northeast 3x > Alaska

Rusty Blackbird feather-mercury concentrations

Feathers roughly represent long-term Hg accumulation

Sequester Hg during growth (post-breeding)

- Feathers from wintering birds suggest similar Hg exposure across breeding range
- But...Northeast at least 4x other regions

Northeast significantly different from the other 4 regions (p < 0.001), the other 4 regions were similar (p > 0.05)

Comparison with co-occurring species: Blood-Hg

Comparison with co-occurring species: Feather-Hg

Change in mercury over time

Change in mercury over time

Why are Rusty Blackbirds so high in mercury? (Edmonds et al. 2012)

- Why do mercury concentrations display seasonal differences?
- Why do the Acadian birds have far greater Hg-concentrations than elsewhere?

Rusty Blackbird

(Icteridae, Euphagus carolinus)

- Breeds in boreal/Acadian forested wetlands
- Breeding diet almost entirely aquatic macroinvertebrate
- Winters in southern U.S., prefers wet bottomlands
- Wintering diet more omnivorous
- ~50 g

MeHg concentration and %MeHg in blood (ppb ww) and potential prey (ppb dw) of breeding birds

Water quality influences MeHg production and bioavailability; The Mercury Cycle

Breeding wetland in Vermont

Water properties promoting MeHg bioavailability

Primary water characteristics promoting bioavailability (following PCA)

> Low DO₂ Low pH High water MeHg

Breeding male Rusty Blackbird

Interpretation

- Low pH (between 5 and 6) weakens binding affinity of MeHg with sulfide and carboxyl groups on DOC, increasing dissolved MeHg available for uptake
- Low DO₂ increases MeHg production by promoting sulfate- and iron- reducing bacteria; and promotes MeHg solubility. High DO₂ can promote demethylation.

Differences between Alaska (pH > 7) and Northeast (pH between 5 and 6) likely due to differences in pH ---- but needs confirmation

Conclusions

- RUBLs in the Acadian Forests of the Northeast had by far the greatest Hg by region, season, and among species
- Seasonal shift in bird-Hg concentrations likely reflect a shift in diet
- Regional variation in bird-Hg concentrations likely reflect differences in pH (requires confirmation)
- Within the Northeast, MeHg-bioavailability promoted by low pH and low DO₂, and high water MeHg concentration
- RUBLs have increased their Hg burdens by 17x since the late 1800s
- Bird-Hg concentrations in the Northeast exceed estimated levels of concern and should be considered a contributing factor to the on-going population decline

Breeding pair in New Hampshire

What's next?

 Compare BBAs with biota Hg concentrations (fish-Hg) [looking for funding and time]

Acknowledgements

Data gathered in cooperation with the International Rusty Blackbird Working Group.

Thank you to collaborators, in particular Dan Cristol's group, Carol Foss, Kate Keyden, Russ Greenberg, Claudia Mettke-Hofman, Steve Matsuoka, MBBA, Patti Newell, IRWG researchers, and their numerous technicians; and to Cate Little and Maureen Flinn for help with invert identification. Body feathers for historic Hg trends provided by the Harvard Museum of Comparative Zoology

Funding and/or logistical support provided in part by BRI, NSERC, CRC, CFI, Ducks Unlimited Canada, and K.C. Irving Centre.

References

Dietz et al. 2011. Temporal trends and future predictions of mercury concentrations in northwest Greenland Polar Bear (*Ursus maritimus*) hair. Environmental Science and Technology 45:1458-1465.

Edmonds et al. 2010. Geographic and seasonal variation in mercury exposure of the declining Rusty Blackbird. The Condor 112:789-799.

Edmonds et al. 2012. Factors regulating the bioavailability of methylmercury to breeding Rusty Blackbirds in northeastern wetlands. Environmental Pollution 171:148-154.

Jackson et al. 2011. Mercury exposure affects the reproductive success of a free-living terrestrial songbird, the Carolina Wren (*Thryothorus Iudovicianus*). Auk 128:759-769.

Martinez-Cortizas et al. 1999. Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition. Science 284:939.

Results: Water chemistry

	variable (units)	mean ± SD	median	range
	THg (ng L ⁻¹)	2.87 ± 0.50	2.75	2.12 to 3.94
\rightarrow	MeHg (ng L ⁻¹)	0.48 ± 0.34	0.52	0.02 to 1.05
\longrightarrow	percent MeHg	17% ± 11%	15%	1% to 35%
	DOC (mg L ⁻¹)	8.65 ± 4.75	7.67	2.12 to 18.98
\rightarrow	рН	5.79 ± 0.76	5.86	4.34 to 7.47
\rightarrow	DO ₂ (mg L ⁻¹)	6.97 ± 2.82	6.92	1.61 to 11.00
	conductivity (mS cm ⁻¹)	0.09 ± 0.16	0.03	0.02 to 0.50
	Redox potential (mV)	66 ± 86	76	-203 to 179
	water temp. (°C)	15.55 ± 3.45	15.52	10.92 to 23.11